论文标题

行为MHealth数据的贝叶斯时变效应模型

A Bayesian Time-Varying Effect Model for Behavioral mHealth Data

论文作者

Koslovsky, Matthew D., Hebert, Emily T., Businelle, Michael S., Vannucci, Marina

论文摘要

移动健康(MHealth)设备与行为健康研究的整合从根本上改变了研究人员和干预主义者能够收集数据以及部署和评估干预策略的方式。在这些研究中,研究人员经常使用生态瞬时评估方法收集密集的纵向数据(ILD),这些方法旨在捕获可能与行为成果相关的心理,情感和环境因素。为了调查在一项基于智能手机的新型戒烟研究中收集的ILD,我们提出了一种贝叶斯变量选择方法,以实现时变效应模型,旨在在戒烟尝试中确定潜在危险因素与吸烟行为之间的动态关系。我们使用参数扩展和数据提升技术来有效探索这些关系的潜在结构如何随时间和主​​体之间的变化。我们通过引入非参数先验的回归系数,在同时确定其包容的同时,对这些关系进行了更深入的见解。结果表明,我们的方法具有良好的位置,可以帮助研究人员有效地评估,设计和提供量身定制的干预策略,以围绕退出尝试的关键时刻。

The integration of mobile health (mHealth) devices into behavioral health research has fundamentally changed the way researchers and interventionalists are able to collect data as well as deploy and evaluate intervention strategies. In these studies, researchers often collect intensive longitudinal data (ILD) using ecological momentary assessment methods, which aim to capture psychological, emotional, and environmental factors that may relate to a behavioral outcome in near real-time. In order to investigate ILD collected in a novel, smartphone-based smoking cessation study, we propose a Bayesian variable selection approach for time-varying effect models, designed to identify dynamic relations between potential risk factors and smoking behaviors in the critical moments around a quit attempt. We use parameter-expansion and data-augmentation techniques to efficiently explore how the underlying structure of these relations varies over time and across subjects. We achieve deeper insights into these relations by introducing nonparametric priors for regression coefficients that cluster similar effects for risk factors while simultaneously determining their inclusion. Results indicate that our approach is well-positioned to help researchers effectively evaluate, design, and deliver tailored intervention strategies in the critical moments surrounding a quit attempt.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源