论文标题

大分子之间的相互作用:参考量子力学方法的难题

Interactions between Large Molecules: Puzzle for Reference Quantum-Mechanical Methods

论文作者

Al-Hamdani, Yasmine S., Nagy, Péter R., Barton, Dennis, Kállay, Mihály, Brandenburg, Jan Gerit, Tkatchenko, Alexandre

论文摘要

量子力学方法广泛用于理解整个生物学,化学和材料科学的分子相互作用。量子扩散蒙特卡洛(DMC)和与单个,双重和扰动三重激发[CCSD(t)]是两种最先进的和可信的波函数方法,这些方法已被绝对证明,可为小有机分子提供准确的相互作用能量。这些方法为广泛使用的半经验和机器学习潜力提供了宝贵的参考信息,尤其是在实验信息稀缺的情况下。但是,小分子以外的系统的一致性是巩固这些方法基准准确性的至关重要的里程碑。在过去几年中,在较大分子中接近如此良好的预测能力已经激发了CCSD(T)以及DMC算法的重大发展,从而导致了数量级的时间降低。在这里,我们表明CCSD(T)和DMC相互作用能与一组可极化的超分子并不一致。在某些复合物中发现了一致,但在一些关键系统分歧中,最多剩下8 kcal/mol的分歧。这导致在室温下,在相应的结合关联常数中,在两种方法适用于适用性的范围内的相应结合关联常数中,差异最多6个数量级。因此,这些发现表明,针对延长分子之间可再现的非共价相互作用时,需要更加谨慎。我们的数据与期望最全面,最强大的波函数方法预测相同的非共价相互作用并表明基准方法未解决的挑战相矛盾。

Quantum-mechanical methods are widely used for understanding molecular interactions throughout biology, chemistry, and materials science. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] are two state-of-the-art and trusted wavefunction methods that have been categorically shown to yield accurate interaction energies for small organic molecules. These methods provide valuable reference information for widely-used semi-empirical and machine learning potentials, especially where experimental information is scarce. However, agreement for systems beyond small molecules is a crucial remaining milestone for cementing the benchmark accuracy of these methods. Approaching such well-converged predictive power in larger molecules has motivated major developments in CCSD(T) as well as DMC algorithms in the past years, resulting in orders of magnitude time-to-solution reductions. Here, we show that CCSD(T) and DMC interaction energies are not in consistent agreement for a set of polarizable supramolecules. Whilst agreement is found for some of the complexes, in a few key systems disagreements of up to 8 kcal/mol remained. This leads to differences of up to 6 orders of magnitude in the corresponding binding association constant at room temperature for systems which are well within the accustomed domain of applicability for both methods. These findings thus indicate that more caution is required when aiming at reproducible non-covalent interactions between extended molecules. Our data contradicts the expectation that the most comprehensive and robust wavefunction methods predict identical non-covalent interactions and indicate an unsolved challenge for benchmark approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源