论文标题

超出关键波图的共旋转设置以外的稳定理论爆炸

A stability theory beyond the co-rotational setting for critical Wave Maps blow up

论文作者

Krieger, Joachim, Miao, Shuang, Schlag, Wilhelm

论文摘要

我们在\ cite {kSt}中构建的blowup解决方案的非等分扰动,用于能量关键波映射到$ \ mathbb {s}^2 $。我们可接受的一类扰动是一种开放式的,在一些足够光滑的拓扑结构中,在光锥附近消失。我们表明,\ cite {kst}的爆炸解决方案在这种扰动下是刚性的,包括爆炸的时空位置。随着爆炸的接近,动力学与在\ cite {djkm}中获得的分类一致,并且所有六个对称参数都会收敛到限制值。与以前的工作相比,证明了在\ cite {kmiao}中证明了\ cite {kSt}在骨膜扰动下的爆炸解决方案的刚度,目前工作中考虑的扰动类别并未施加任何对称限制。变量的分离和分解为角度傅立叶模式导致无限的非线性方程系统,我们为小型可接受的数据求解。非线性分析基于扭曲的傅立叶变换,该变换与贝塞尔型schrödinger操作员的无限家族相关,该家族由角动量〜$ n $索引。对于参数$ \ hbar = \ frac {1} {n+1} $,对于大$ | n | $的参数$ \ hbar = \ frac {n+1} $,一个半古典的WKB型光谱分析使我们能够有效地确定整个无限家族的扭曲傅立叶基础。我们的线性分析基于全局liouville-green变换,如较早的作品\ cite {csst,cdst}。

We exhibit non-equivariant perturbations of the blowup solutions constructed in \cite{KST} for energy critical wave maps into $\mathbb{S}^2$. Our admissible class of perturbations is an open set in some sufficiently smooth topology and vanishes near the light cone. We show that the blowup solutions from \cite{KST} are rigid under such perturbations, including the space-time location of blowup. As blowup is approached, the dynamics agree with the classification obtained in \cite{DJKM}, and all six symmetry parameters converge to limiting values. Compared to the previous work \cite{KMiao} in which the rigidity of the blowup solutions from \cite{KST} under equivariant perturbations was proved, the class of perturbations considered in the present work does not impose any symmetry restrictions. Separation of variables and decomposing into angular Fourier modes leads to an infinite system of coupled nonlinear equations, which we solve for small admissible data. The nonlinear analysis is based on the distorted Fourier transform, associated with an infinite family of Bessel type Schrödinger operators on the half-line indexed by the angular momentum~$n$. A semi-classical WKB-type spectral analysis relative to the parameter $\hbar=\frac{1}{n+1}$ for large $|n|$ allows us to effectively determine the distorted Fourier basis for the entire infinite family. Our linear analysis is based on the global Liouville-Green transform as in the earlier works \cite{CSST, CDST}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源