论文标题

具有重量限制的单调性质的最小亚集的有效恒定因子近似枚举

Efficient Constant-Factor Approximate Enumeration of Minimal Subsets for Monotone Properties with Weight Constraints

论文作者

Kobayashi, Yasuaki, Kurita, Kazuhiro, Wasa, Kunihiro

论文摘要

如果每个$ x \ subseteq u $满足$π$,则有限套装$ u $的属性$π$是\ emph {monotone},每个超级$ y \ y \ subseteq u $ of $ x $也满足$π$。许多组合特性可以看作是单调特性。找到满足$π$的$ u $最低子集的问题是组合优化的核心问题。尽管已经开发了许多近似/精确的算法来解决众多属性上的这种问题,但是由于难以在现实世界中的问题上构建准确的数学模型,这些算法通常不适合现实世界应用。克服这一困难的一种有希望的方法是\ emph {枚举}多个小解决方案,而不是\ emph {find}一个单个小解决方案。为此,给定重量函数$ w:其重量最多为$ k $,并且可能会输出一些满足$π$的最小子集,其重量超过$ k $,但对于某些常数$ c \ ge 1 $,最多是$ ck $。这些算法使我们能够有效地列举最小的顶点覆盖层,有界度图中的最低主导套装,最小的反馈顶点集合,最小级别的秩超刻度等级的最小击球集等,最多$ k $,具有恒定近似因素。

A property $Π$ on a finite set $U$ is \emph{monotone} if for every $X \subseteq U$ satisfying $Π$, every superset $Y \subseteq U$ of $X$ also satisfies $Π$. Many combinatorial properties can be seen as monotone properties. The problem of finding a minimum subset of $U$ satisfying $Π$ is a central problem in combinatorial optimization. Although many approximate/exact algorithms have been developed to solve this kind of problem on numerous properties, a solution obtained by these algorithms is often unsuitable for real-world applications due to the difficulty of building accurate mathematical models on real-world problems. A promising approach to overcome this difficulty is to \emph{enumerate} multiple small solutions rather than to \emph{find} a single small solution. To this end, given a weight function $w: U \to \mathbb N$ and an integer $k$, we devise algorithms that \emph{approximately} enumerate all minimal subsets of $U$ with weight at most $k$ satisfying $Π$ for various monotone properties $Π$, where "approximate enumeration" means that algorithms output all minimal subsets satisfying $Π$ whose weight at most $k$ and may output some minimal subsets satisfying $Π$ whose weight exceeds $k$ but is at most $ck$ for some constant $c \ge 1$. These algorithms allow us to efficiently enumerate minimal vertex covers, minimal dominating sets in bounded degree graphs, minimal feedback vertex sets, minimal hitting sets in bounded rank hypergraphs, etc., of weight at most $k$ with constant approximation factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源