论文标题

具有隐式交换门计数的多项式尺寸模型以重新排序

A polynomial size model with implicit SWAP gate counting for exact qubit reordering

论文作者

Mulderij, Jesse, Aardal, Karen I., Chiscop, Irina, Phillipson, Frank

论文摘要

由于量子计算背后的物理学,量子电路设计人员必须遵守量子位有限的相互作用距离所带来的约束。因此,需要通过插入交换门来修改现有电路,这通过互换两个量子位量子状态的位置来改变量子顺序。我们考虑在线性阵列上最近的邻居合规性问题,其中要最小化所需的交换门的数量。我们引入了一个整数线性编程模型的问题,其中大小在量子位和门的数量中多项式扩展。此外,我们使用商业求解器CPLEX解决了最佳的基准实例。与以前使用精确方法评估的基准实例相比,基准实例大大更大。最大的电路最多包含$ 18 $ QUBITS或超过$ 100 $ $ QUANS的门。该公式似乎也适合开发启发式方法,因为在搜索过程中很快发现了(接近)最佳解决方案。

Due to the physics behind quantum computing, quantum circuit designers must adhere to the constraints posed by the limited interaction distance of qubits. Existing circuits need therefore to be modified via the insertion of SWAP gates, which alter the qubit order by interchanging the location of two qubits' quantum states. We consider the Nearest Neighbor Compliance problem on a linear array, where the number of required SWAP gates is to be minimized. We introduce an Integer Linear Programming model of the problem of which the size scales polynomially in the number of qubits and gates. Furthermore, we solve $131$ benchmark instances to optimality using the commercial solver CPLEX. The benchmark instances are substantially larger in comparison to those evaluated with exact methods before. The largest circuits contain up to $18$ qubits or over $100$ quantum gates. This formulation also seems to be suitable for developing heuristic methods since (near) optimal solutions are discovered quickly in the search process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源