论文标题

EM-RBR:从推理的角度来看,知识图完成的增强框架

EM-RBR: a reinforced framework for knowledge graph completion from reasoning perspective

论文作者

An, Zhaochong, Chen, Bozhou, Quan, Houde, Lin, Qihui, Wang, Hongzhi

论文摘要

知识图完成旨在预测知识图(kg)中给定实体中的新链接。大多数主流嵌入方法都集中在给定kg中包含的事实三胞胎上,但是,忽略了由知识库驱动的逻辑规则所提供的丰富背景信息。为了解决这个问题,在本文中,我们提出了一个名为EM-RBR(嵌入和基于规则的推理)的一般框架,能够根据规则和最新的嵌入模型结合推理的优势。 EM-RBR的目的是利用规则中包含的关系背景知识来进行多关系推理链接预测,而不是嵌入模型中的表面矢量三角链接。通过这种方式,我们可以在更深层次的情况下探索两个实体之间的关系,以达到更高的准确性。在实验中,我们证明,与FB15K,WN18和我们的新数据集FB15K-R相比,EM-RBR的性能更好,尤其是我们的新数据集,该数据集比我们的模型比那些最先进的工厂更好地表现了。我们可以在https://github.com/1173710224/link-prediction-with-rule-rulesing上提供EM-RBR的实现。

Knowledge graph completion aims to predict the new links in given entities among the knowledge graph (KG). Most mainstream embedding methods focus on fact triplets contained in the given KG, however, ignoring the rich background information provided by logic rules driven from knowledge base implicitly. To solve this problem, in this paper, we propose a general framework, named EM-RBR(embedding and rule-based reasoning), capable of combining the advantages of reasoning based on rules and the state-of-the-art models of embedding. EM-RBR aims to utilize relational background knowledge contained in rules to conduct multi-relation reasoning link prediction rather than superficial vector triangle linkage in embedding models. By this way, we can explore relation between two entities in deeper context to achieve higher accuracy. In experiments, we demonstrate that EM-RBR achieves better performance compared with previous models on FB15k, WN18 and our new dataset FB15k-R, especially the new dataset where our model perform futher better than those state-of-the-arts. We make the implementation of EM-RBR available at https://github.com/1173710224/link-prediction-with-rule-based-reasoning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源