论文标题

在经历社会阶段变化的蚂蚁视频中识别异常状态

Identification of Abnormal States in Videos of Ants Undergoing Social Phase Change

论文作者

Choi, Taeyeong, Pyenson, Benjamin, Liebig, Juergen, Pavlic, Theodore P.

论文摘要

生物学既是重要的应用领域,也是开发先进机器学习技术的动力来源。尽管高通量测序引起的大型且复杂的数据集已引起了很多关注,但高质量的视频记录技术的进步已经开始生成类似的丰富数据集,这些数据集需要从计算机视觉和时间序列分析中获得复杂技术。此外,正如研究一种生物体中的基因表达模式可以揭示适用于其他生物体的一般原理一样,对实验可触犯的模型系统(例如实验室蚂蚁菌落)中对复杂社交相互作用的研究也可以提供有关其他社会群体动态的一般原则。在这里,我们关注一个这样的例子,从50多个Harpegnathos蚂蚁的小型实验室菌落中的生殖调节研究中进行了一个这样的例子。这些蚂蚁可以人为地开始进行约20天的等级改革过程。尽管这一过程的结论对人类观察者来说是显着的,但尚不清楚瞬时期间哪些行为有助于该过程。为了解决这个问题,我们探讨了单级分类(OC)在检测蚂蚁菌落中的异常状态中的潜在应用,在蚂蚁菌落中,行为数据仅适用于培训期间的正常社会条件。具体而言,我们建立在深度支持向量数据描述(DSVDD)的基础上,并引入内部外部发电机(IO-gen),该发电机(IO-gen)合成了训练期间伪造的“内部离群”观测值,该观察值在DSVDD数据描述的中心附近。我们表明,IO-GEN提高了最终OC分类器相对于其他DSVDD基准的可靠性。该方法可用于筛选需要其他人类观察的视频帧。

Biology is both an important application area and a source of motivation for development of advanced machine learning techniques. Although much attention has been paid to large and complex data sets resulting from high-throughput sequencing, advances in high-quality video recording technology have begun to generate similarly rich data sets requiring sophisticated techniques from both computer vision and time-series analysis. Moreover, just as studying gene expression patterns in one organism can reveal general principles that apply to other organisms, the study of complex social interactions in an experimentally tractable model system, such as a laboratory ant colony, can provide general principles about the dynamics of other social groups. Here, we focus on one such example from the study of reproductive regulation in small laboratory colonies of more than 50 Harpegnathos ants. These ants can be artificially induced to begin a ~20 day process of hierarchy reformation. Although the conclusion of this process is conspicuous to a human observer, it remains unclear which behaviors during the transient period are contributing to the process. To address this issue, we explore the potential application of One-class Classification (OC) to the detection of abnormal states in ant colonies for which behavioral data is only available for the normal societal conditions during training. Specifically, we build upon the Deep Support Vector Data Description (DSVDD) and introduce the Inner-Outlier Generator (IO-GEN) that synthesizes fake "inner outlier" observations during training that are near the center of the DSVDD data description. We show that IO-GEN increases the reliability of the final OC classifier relative to other DSVDD baselines. This method can be used to screen video frames for which additional human observation is needed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源