论文标题
关于khovanov的准偏置链接的同源性
On Khovanov Homology of Quasi-Alternating Links
论文作者
论文摘要
我们证明,任何准偏置链接的Khovanov同源性的差分等级中的任何差距的长度是一个。结果,我们获得了任何此类链接的琼斯多项式中的任何差距的长度是一个。这建立了[5]中的猜想2.3的较弱版本。此外,我们从琼斯多项式的广度上获得了任何此类链接的决定因素的下限。这建立了[17]中的猜想3.8的较弱版本。获得此结果的主要工具是为准偏置链接的类别建立骑士移动猜想[2,猜想1]。
We prove that the length of any gap in the differential grading of the Khovanov homology of any quasi-alternating link is one. As a consequence, we obtain that the length of any gap in the Jones polynomial of any such link is one. This establishes a weaker version of Conjecture 2.3 in [5]. Moreover, we obtain a lower bound for the determinant of any such link in terms of the breadth of its Jones polynomial. This establishes a weaker version of Conjecture 3.8 in [17]. The main tool in obtaining this result is establishing the Knight Move Conjecture [2,Conjecture 1] for the class of quasi-alternating links.