论文标题
Geneticknn:一种由遗传算法支持的加权KNN方法用于光度估算类星体
GeneticKNN: A Weighted KNN Approach Supported by Genetic Algorithm for Photometric Redshift Estimation of Quasars
论文作者
论文摘要
我们将K-Nearest邻居(KNN)与遗传算法(GA)相结合,用于测量类星体的光度红移估计,对于Geneticknn而言,这是GA支持的加权KNN方法。与KNN相比,这种方法有两种改进:一个是由GA加权的特征。另一个是,预测的红移不是K邻居的红移平均值,而是K邻居的中位数和红移平均值,即$ P \ Times Z_ {中值} +(1-P)\ times z__ {mean fire} $。根据SDSS和SDSS的类星体样品,我们探索了Geneticknn用于光度红移估计的性能,与其他六种传统的机器学习方法相比,即最小绝对收缩和选择操作员(LASSO)(LASSO),支持矢量回归(SVR),多层Perseptrons(Mlptrons(Mlp)(MLP),XGBBORST,XGBOIST,KNN和knn snnn and knn。 KNN和随机森林显示出它们的优越性。考虑到KNN的易于实施,我们以Geneticknn的形式改进了KNN,并将Geneticknn应用于类星体的光度红移估计上。最后,Geneticknn的性能比所有情况下的geneticknn的表现要好于Lasso,SVR,MLP,Xgboost,Knn和随机森林的表现。此外,使用相同方法的额外明智幅度,精度更好。
We combine K-Nearest Neighbors (KNN) with genetic algorithm (GA) for photometric redshift estimation of quasars, short for GeneticKNN, which is a weighted KNN approach supported by GA. This approach has two improvements compared to KNN: one is the feature weighted by GA; another is that the predicted redshift is not the redshift average of K neighbors but the weighted average of median and mean of redshifts for K neighbors, i.e. $p\times z_{median} + (1-p)\times z_{mean}$. Based on the SDSS and SDSS-WISE quasar samples, we explore the performance of GeneticKNN for photometric redshift estimation, comparing with the other six traditional machine learning methods, i.e. Least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), Multi Layer Perceptrons (MLP), XGBoost, KNN and random forest. KNN and random forest show their superiority. Considering the easy implementation of KNN, we make improvement on KNN as GeneticKNN and apply GeneticKNN on photometric redshift estimation of quasars. Finally the performance of GeneticKNN is better than that of LASSO, SVR, MLP, XGBoost, KNN and random forest for all cases. Moreover the accuracy is better with the additional WISE magnitudes for the same method.