论文标题
在通用的一维超导体中,持续存在的主要界面状态具有奇数的费米表面
Ever-present Majorana bound state in a generic one-dimensional superconductor with odd number of Fermi surfaces
论文作者
论文摘要
具有奇数Fermi表面的准1D超导体有望在其边界处表现出非排定的主要结合状态,该状态在其边界与绝缘体(后者可以是实际的绝缘体材料或真空,对于终止样品)。该特性的先前的显式理论演示是针对大型哈密顿官以及最重要的边界的特定显微镜模型进行的。在这项工作中,我们从理论上证明了该属性使用基于对称性的低能量连续模型和一般边界条件的形式,适用于整个系统。我们得出了Bogoliubov-De Gennes低能量的Hamiltonian的一般形式,该形式仅受电荷连接对称性$ \ MATHCAL {C} _+$的类型$ \ Mathcal {C} _+^_+^_+$的$ $。至关重要的是,我们还得出了用绝缘子描述边界的最通用的形式,仅符合概率电流保护的基本原理和$ \ MATHCAL {C} _+$对称性。这样的{\ em正常反射}边界条件不包含电子和孔之间的散射。我们发现,对于奇数的费米表面,只要散装处于宽大的超导状态,始终存在主要的结合状态,而不论批量哈密顿和边界条件的参数如何。重要的是,当两个费米点不完全相反时,我们的一般模型包括一个可能的{\ em fermi点不匹配},这会脱离超导性。我们发现,费米 - 点不匹配确实{\ em not}对Majorana Bound状态具有直接的破坏性效应,因为一旦开放了块状差距,始终存在界限。
A quasi-1D superconductor with odd number of Fermi surfaces is expected to exhibit a nondegenerate Majorana bound state at the Fermi level at its boundary with an insulator (where the latter could be an actual insulator material or vacuum, for a terminated sample). Previous explicit theoretical demonstrations of this property were done for specific microscopic models of the bulk Hamiltonian and, most importantly, of the boundary. In this work, we theoretically demonstrate that this property holds for the whole class of systems, using the symmetry-based formalism of low-energy continuum models and general boundary conditions. We derive the general form of the Bogoliubov-de Gennes low-energy Hamiltonian that is subject only to charge-conjugation symmetry $\mathcal{C}_+$ of the type $\mathcal{C}_+^2=+1$ and a few minimal assumptions. Crucially, we also derive the most general form of the boundary conditions describing the boundary with an insulator, subject only to the fundamental principle of the probability-current conservation and $\mathcal{C}_+$ symmetry. Such {\em normal-reflection} boundary conditions do not contain scattering between electrons and holes. We find that for odd number of Fermi surfaces a Majorana bound state always exists as long as the bulk is in the gapped superconducting state, irrespective of the parameters of the bulk Hamiltonian and boundary conditions. Importantly, our general model includes a possible {\em Fermi-point mismatch}, when the two Fermi points are not at exactly opposite momenta, which disfavors superconductivity. We find that the Fermi-point mismatch does {\em not} have a direct destructive effect on the Majorana bound state, in the sense that once the bulk gap is opened the bound state is always present.