论文标题

旋转玻色子系统中的量子疤痕:周期性轨道的基本家族

Quantum scarring in a spin-boson system: fundamental families of periodic orbits

论文作者

Pilatowsky-Cameo, Saúl, Villaseñor, David, Bastarrachea-Magnani, Miguel A., Lerma-Hernández, Sergio, Santos, Lea F., Hirsch, Jorge G.

论文摘要

顾名思义,周期性轨道是及时重复的动态系统的解决方案。在常规制度中,周期性的轨道稳定,而在混乱的政权中,它们变得不稳定。不稳定的周期轨道的存在直接与量子疤痕现象有关,量子疤痕现象限制了特征状态的定居程度,并导致动力学中的复兴。在这里,我们在超级阶段研究DICKE模型,并确定两组基本的周期轨道。该实验可实现的原子 - 光子模型在低能量下是规则的,在高能下是混乱的。我们研究了周期性轨道在常规和混乱方案中本征状结构中的影响,并获得其量化能量。我们还引入了一项措施,以量化每个周期轨道家族获得的特征态得到多少伤痕,并比较近距离和远离这些轨道的初始相干状态的动态。

As the name indicates, a periodic orbit is a solution for a dynamical system that repeats itself in time. In the regular regime, periodic orbits are stable, while in the chaotic regime, they become unstable. The presence of unstable periodic orbits is directly associated with the phenomenon of quantum scarring, which restricts the degree of delocalization of the eigenstates and leads to revivals in the dynamics. Here, we study the Dicke model in the superradiant phase and identify two sets of fundamental periodic orbits. This experimentally realizable atom-photon model is regular at low energies and chaotic at high energies. We study the effects of the periodic orbits in the structure of the eigenstates in both regular and chaotic regimes and obtain their quantized energies. We also introduce a measure to quantify how much scarred an eigenstate gets by each family of periodic orbits and compare the dynamics of initial coherent states close and away from those orbits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源