论文标题

埃斯根:极端样品的对抗性

ExGAN: Adversarial Generation of Extreme Samples

论文作者

Bhatia, Siddharth, Jain, Arjit, Hooi, Bryan

论文摘要

降低极端事件引起的风险是许多应用程序的基本目标,例如自然灾害,金融崩溃,流行病等的建模。为了管理这种风险,至关重要的一步是能够理解或产生各种极端情况。基于生成对抗网络(GAN)的现有方法在生成逼真的样本方面出色,但试图生成典型的样本,而不是极端样本。因此,在这项工作中,我们提出了Exgan,这是一种基于GAN的方法来生成现实和极端样本。为了以原则性的方式对训练分布的极端进行建模,我们的工作借鉴了极值理论(EVT),这是一种模拟分布的极端尾巴的概率方法。对于实际实用程序,我们的框架允许用户指定所需的极端度量,以及他们希望采样的期望极端概率。关于Real US降水数据的实验表明,我们的方法基于视觉检查和定量度量以有效的方式生成现实的样本。此外,与基线方法所需的$ \ Mathcal {o}(\ frac {1}τ)相反,可以在恒定时间内(就极端性概率$τ$)生成日益极端的示例(相对于极端性概率$τ$)。

Mitigating the risk arising from extreme events is a fundamental goal with many applications, such as the modelling of natural disasters, financial crashes, epidemics, and many others. To manage this risk, a vital step is to be able to understand or generate a wide range of extreme scenarios. Existing approaches based on Generative Adversarial Networks (GANs) excel at generating realistic samples, but seek to generate typical samples, rather than extreme samples. Hence, in this work, we propose ExGAN, a GAN-based approach to generate realistic and extreme samples. To model the extremes of the training distribution in a principled way, our work draws from Extreme Value Theory (EVT), a probabilistic approach for modelling the extreme tails of distributions. For practical utility, our framework allows the user to specify both the desired extremeness measure, as well as the desired extremeness probability they wish to sample at. Experiments on real US Precipitation data show that our method generates realistic samples, based on visual inspection and quantitative measures, in an efficient manner. Moreover, generating increasingly extreme examples using ExGAN can be done in constant time (with respect to the extremeness probability $τ$), as opposed to the $\mathcal{O}(\frac{1}τ)$ time required by the baseline approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源