论文标题

多模式模因分类:调查和开放研究问题

A Multimodal Memes Classification: A Survey and Open Research Issues

论文作者

Afridi, Tariq Habib, Alam, Aftab, Khan, Muhammad Numan, Khan, Jawad, Lee, Young-Koo

论文摘要

模因是图形和文字重叠,因此他们共同提出了如果缺少其中一个的概念,这些概念变得可疑。它主要以笑话,讽刺,激励等的形式传播在社交媒体平台上。在Bert在自然语言处理(NLP)中成功之后,研究人员倾向于视觉语言(VL)多模式问题,例如模因分类,图像字幕,图像字幕,图像标题,视觉答案(VQA)等。不幸的是,许多模因每天都在社交媒体平台上上传,这些平台需要自动审查以遏制错误信息和仇恨。最近,这个问题吸引了研究人员和从业人员的注意。在其他VL数据集上执行的最新方法往往会在模因分类上失败。在这种情况下,这项工作旨在对模因分类进行全面研究,通常是关于VL多模式问题和最前沿解决方案的。我们为VL问题提出了一个广义框架。我们涵盖了关于VL问题的早期和下一代工作。最后,我们确定并阐明了一些开放的研究问题和挑战。这是第一项介绍了有关模因分类的高级分类技术的广义观点,据我们所知。我们认为,这项研究为机器学习(ML)研究社区提供了清晰的路线图,以实施和增强模因分类技术。

Memes are graphics and text overlapped so that together they present concepts that become dubious if one of them is absent. It is spread mostly on social media platforms, in the form of jokes, sarcasm, motivating, etc. After the success of BERT in Natural Language Processing (NLP), researchers inclined to Visual-Linguistic (VL) multimodal problems like memes classification, image captioning, Visual Question Answering (VQA), and many more. Unfortunately, many memes get uploaded each day on social media platforms that need automatic censoring to curb misinformation and hate. Recently, this issue has attracted the attention of researchers and practitioners. State-of-the-art methods that performed significantly on other VL dataset, tends to fail on memes classification. In this context, this work aims to conduct a comprehensive study on memes classification, generally on the VL multimodal problems and cutting edge solutions. We propose a generalized framework for VL problems. We cover the early and next-generation works on VL problems. Finally, we identify and articulate several open research issues and challenges. This is the first study that presents the generalized view of the advanced classification techniques concerning memes classification to the best of our knowledge. We believe this study presents a clear road-map for the Machine Learning (ML) research community to implement and enhance memes classification techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源