论文标题
基于臭氧的顺序浸润合成对称块共聚物中Al2O3纳米结构的合成
Ozone-based sequential infiltration synthesis of Al2O3 nanostructures in symmetric block copolymer
论文作者
论文摘要
顺序浸润合成(SIS)提供了一种原始策略,可以通过在聚合物膜中浸润气体前体来生长无机材料。 SIS与由块共聚物(BCP)自组装产生的微相分离的纳米结构结合在一起,选择性地结合了前体,仅与一个模仿原始BCP模板的形态的一个域结合。这种方法代表了从自组装BCP薄膜开始制造无机纳米结构的智能解决方案,鉴于高级光刻应用和功能性纳米结构合成。使用三甲基铝(TMA)和H2O前体的SIS过程在自组装的PS-B-PMMA BCP薄膜中建立为模型系统,其中PMMA相被选择性地浸润。但是,聚合物材料允许的温度范围将可用的前体限制为高反应性试剂,例如TMA。为了扩展SIS方法并访问广泛的材料库,关键步骤是使用与初始聚合物模板完全兼容的反应性试剂的过程实现过程。这项工作报告了一项全面的形态(SEM,SE,AFM)和物理化学(XPS)研究氧化铝纳米结构,该氧化铝纳米结构通过使用层状形态的自组装的PS-B-PMMA薄膜中的O3作为氧气前体合成的氧气过程。与基于H2O的SIS Pro-CESS的比较验证了将O3用作氧气前体的可能性,从而扩大了用于制造无机纳米结构的前体范围。
Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with micro-phase separated nanostructures resulting from block copoly-mer (BCP) self-assembly, SIS selectively binds the precursors to only one domain mimicking the morphology of the original BCP template. This methodology represents a smart solution for the fabrication of inorganic nanostructures starting from self-assembled BCP thin films, in view of advanced lithographic application and of functional nanostructure synthesis. The SIS process using Trimethylaluminum (TMA) and H2O precursors in self-assembled PS-b-PMMA BCP thin films established as a model system, where the PMMA phase is selectively infiltrated. However the temperature range allowed by polymeric material restricts the available precursors to highly reactive reagents, such as TMA. In order to extend the SIS methodology and access a wide library of materials, a crucial step is the implementation of processes using reactive reagents that are fully compatible with the initial polymeric template. This work reports a comprehensive morphological (SEM, SE, AFM) and physico-chemical (XPS) investigation of alumina nanostructures synthesized by means of a SIS process using O3 as oxygen precursor in self-assembled PS-b-PMMA thin films with lamellar morphology. The comparison with the H2O-based SIS pro-cess validates the possibility to use O3 as oxygen precursor expanding the possible range of precursors for the fabrication of inorganic nanostructures.