论文标题
通过基于MDL框架的原子规范从噪声中从噪声中恢复的低率矩阵
Low-Rank Matrix Recovery from Noise via an MDL Framework-based Atomic Norm
论文作者
论文摘要
通过稀疏噪声/异常值损坏的基础低级数据的基础低级结构的恢复正在引起越来越多的兴趣。但是,在许多低级视力问题中,尚不清楚基础结构的确切目标等级以及稀疏异常值的特定位置和值。因此,常规方法不能完全分开低级别和稀疏组件,尤其是在离群值或不足观察的情况下。因此,在这项研究中,我们采用了低级别基质恢复的最小描述长度(MDL)原理和原子规范来克服这些局限性。首先,我们采用原子规范来找到所有低级别和稀疏项的候选原子,然后我们将模型的描述长度最小化,以分别选择低级别和稀疏矩阵的适当原子。我们的实验分析表明,即使观察次数有限或腐败比率很高,提出的方法也可以比最新方法获得更高的成功率。利用合成数据和实际感测应用程序(高动态范围成像,背景建模,消除噪声和阴影)的实验结果证明了该方法的有效性,鲁棒性和效率。
The recovery of the underlying low-rank structure of clean data corrupted with sparse noise/outliers is attracting increasing interest. However, in many low-level vision problems, the exact target rank of the underlying structure and the particular locations and values of the sparse outliers are not known. Thus, the conventional methods cannot separate the low-rank and sparse components completely, especially in the case of gross outliers or deficient observations. Therefore, in this study, we employ the minimum description length (MDL) principle and atomic norm for low-rank matrix recovery to overcome these limitations. First, we employ the atomic norm to find all the candidate atoms of low-rank and sparse terms, and then we minimize the description length of the model in order to select the appropriate atoms of low-rank and the sparse matrices, respectively. Our experimental analyses show that the proposed approach can obtain a higher success rate than the state-of-the-art methods, even when the number of observations is limited or the corruption ratio is high. Experimental results utilizing synthetic data and real sensing applications (high dynamic range imaging, background modeling, removing noise and shadows) demonstrate the effectiveness, robustness and efficiency of the proposed method.