论文标题
长期序列的神经粗糙微分方程
Neural Rough Differential Equations for Long Time Series
论文作者
论文摘要
神经控制的微分方程(CDE)是复发性神经网络的连续时间类似物,因为神经ODES与残留网络相关,并提供了一种记忆效率的连续时间方式来模拟潜在不规则时间序列的功能。计算神经CDE的正向通行的现有方法涉及将传入的时间序列嵌入路径空间,通常是通过插值嵌入路径空间,并使用此路径的评估来驱动隐藏状态。在这里,我们使用粗糙的路径理论来扩展此公式。我们不是直接嵌入路径空间中,而是通过其\ textIt {log-signature}在较小的时间间隔内表示输入信号,该信号描述了信号如何驱动CDE。这是求解\ textit {粗微分方程}(RDES)的方法,相应地,我们将我们的主要贡献描述为神经RDE的引入。该扩展具有一个目的:通过将神经CDE方法概括为更广泛的驾驶信号,我们证明了解决长期序列的特殊优势。在这个制度中,我们证明了对长度长达17K观察的问题的功效,并观察到与现有方法相比,大量训练的速度,模型性能的改善以及记忆需求减少。
Neural controlled differential equations (CDEs) are the continuous-time analogue of recurrent neural networks, as Neural ODEs are to residual networks, and offer a memory-efficient continuous-time way to model functions of potentially irregular time series. Existing methods for computing the forward pass of a Neural CDE involve embedding the incoming time series into path space, often via interpolation, and using evaluations of this path to drive the hidden state. Here, we use rough path theory to extend this formulation. Instead of directly embedding into path space, we instead represent the input signal over small time intervals through its \textit{log-signature}, which are statistics describing how the signal drives a CDE. This is the approach for solving \textit{rough differential equations} (RDEs), and correspondingly we describe our main contribution as the introduction of Neural RDEs. This extension has a purpose: by generalising the Neural CDE approach to a broader class of driving signals, we demonstrate particular advantages for tackling long time series. In this regime, we demonstrate efficacy on problems of length up to 17k observations and observe significant training speed-ups, improvements in model performance, and reduced memory requirements compared to existing approaches.