论文标题
各向异性紧凑型物体中的$ f(r,t)$重力
Anisotropic Compact Objects in Modified $f(R,T)$ gravity
论文作者
论文摘要
我们在$ f(r,t)= r+2χt$修饰的重力中获得一类各向异性的球形对称性相对论解决方案,在液压平衡中的紧凑对象,其中$ r $是ricci scall,$ t $是能量动量量量的痕迹,$χ$χ$ $ qub $ $χ$ couneension couple couple couple dimple coupling couplen counplen cou couplen counplemplemplist。物质是lagrangian是$ l_ {m} = - \ frac {1} {3}(2p_ {t}+p_ {r})$,其中$ p_r $和$ p_t $代表radial and Swintialtial and Swintential压力。具有密集核物质的紧凑型物体有望是各向异性的。恒星模型是针对在改良的芬奇 - 基(FS)Ansatz中工作的各向异性中子星构建的,而无需预先介绍状态方程。 在所有特定情况下,恒星模型正在研究绘制物理量,例如能量密度,各向异性参数,径向和切向压力。使用因果关系条件和绝热指数检查恒星模型的稳定性。使用观察到的紧凑型恒星的质量,我们获得了恒星模型,该模型可预测带有不同重力偶联常数$χ$的紧凑型物体内物质的恒星和EOS的半径。还发现,可以使用$χ<0 $容纳更大的恒星。此处获得的恒星模型遵守了物理可接受性标准,这些标准显示了一类稳定的紧凑型物体在修改后的$ f(r,t)$ gravity中的一致性。
We obtain a class of anisotropic spherically symmetric relativistic solutions of compact objects in hydrostatic equilibrium in the $f(R,T) =R+2χT$ modified gravity, where $R$ is the Ricci scalar, $T$ is the trace of the energy momentum tensor and $χ$ is a dimensionless coupling parameter. The matter Lagrangian is $L_{m}=- \frac{1}{3}(2p_{t}+p_{r})$, where $p_r$ and $p_t$ represents the radial and tangential pressures. Compact objects with dense nuclear matter is expected to be anisotropic. Stellar models are constructed for anisotropic neutron stars working in the modified Finch-Skea (FS) ansatz without preassuming an equation of state. The stellar models are investigate plotting physical quantities like energy density, anisotropy parameter, radial and tangential pressures in all particular cases. The stability of stellar models are checked using the causality conditions and adiabatic index. Using the observed mass of a compact star we obtain stellar models that predicts the radius of the star and EoS for matter inside the compact objects with different values of gravitational coupling constant $χ$. It is also found that a more massive star can be accommodated with $χ<0$. The stellar models obtained here obey the physical acceptability criteria which show consistency for a class of stable compact objects in modified $f(R, T)$ gravity.