论文标题

关于量子厅效应,kosterlitz-无尽的相变,狄拉克磁性单极和Bohr-Sommerfeld量化

On quantum Hall effect, Kosterlitz-Thouless phase transition, Dirac magnetic monopole, and Bohr-Sommerfeld quantization

论文作者

Buot, Felix A., Elnar, Allan Roy, Maglasang, Gibson, Otadoy, Roland E. S.

论文摘要

我们解决了低维系统的运输和涡流/涡流动作中的量化现象,由于振荡动力学或稳态系统(例如,盒子或圆环的粒子,brillouin zone ins the Partion tos the Partion of Asspace)的固定量化相位空间中的固定量化,以及量化量的粒子,brillouin zone和Matsubara时区或Matsubara时区或Matsubara量化的量化),以及量化的量化。 We discuss how the self-consistent Bohr-Sommerfeld quantization condition permeates the relationships between the quantization of integer Hall effect, fractional quantum Hall effect, the Berezenskii-Kosterlitz-Thouless vortex quantization, the Dirac magnetic monopole, the Haldane phase, contact resistance in closed mesoscopic circuits of quantum physics, and in the monodromy (holonomy) of completely integrable量子几何体系。在开放系统的量子运输中,量化发生在量子电导的基本单位,其他由普朗克常数指示的量子单元中的其他封闭系统,以及用于离散涡流电荷和DIRAC磁性单极电荷的单位的来源。本文的论点是,如果我们简单地将B-S量化条件作为u(1)量规理论进行,例如通过Chern-Simons量规理论或拓扑量频段理论(TBT)的拓扑结构理论(TBT),例如,在浆果的联系和弯曲方面,所有的量化方法是所有的量级,那么所有的量化方法都在所有量量化方面都在所有量量化方面,就可以使所有量级的方法都在所有量量化方面,然后在所有方面,都在所有的量子化方面都在所有的量化方法中,就所有的量化方法都在所有的量化方面,都在所有量量化方面,都在所有的量子化方面,所有的量化方法都在所有的量量化方面,都在于所有量子化的方法,然后所有量级的量化方法,然后所有量量的量化方法,然后统一。

We addressed quantization phenomena in transport and vortex/precession-motion of low-dimensional systems, stationary quantization of confined motion in phase space due to oscillatory dynamics or compacti fication of space and time for steady-state systems (e.g., particle in a box or torus, Brillouin zone, and Matsubara time zone or Matsubara quantized frequencies), and the quantization of sources. We discuss how the self-consistent Bohr-Sommerfeld quantization condition permeates the relationships between the quantization of integer Hall effect, fractional quantum Hall effect, the Berezenskii-Kosterlitz-Thouless vortex quantization, the Dirac magnetic monopole, the Haldane phase, contact resistance in closed mesoscopic circuits of quantum physics, and in the monodromy (holonomy) of completely integrable Hamiltonian systems of quantum geometry. In quantum transport of open systems, quantization occurs in fundamental units of quantum conductance, other closed systems in quantum units dictated by Planck's constant, and for sources in units of discrete vortex charge and Dirac magnetic monopole charge. The thesis of the paper is that if we simply cast the B-S quantization condition as a U(1) gauge theory, like the gauge field of the topological quantum field theory (TQFT) via the Chern-Simons gauge theory, or specifically as in topological band theory (TBT) of condensed matter physics in terms of Berry connection and curvature to make it self-consistent, then all the quantization method in all the physical phenomena treated in this paper are unified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源