论文标题

搜索具有全天HST成像和广泛光谱的深度学习的星系群集成员

The search for galaxy cluster members with deep learning of panchromatic HST imaging and extensive spectroscopy

论文作者

Angora, G., Rosati, P., Brescia, M., Mercurio, A., Grillo, C., Caminha, G., Meneghetti, M., Nonino, M., Vanzella, E., Bergamini, P., Biviano, A., Lombardi, M.

论文摘要

下一代数据密集型调查必将产生大量数据,可以使用机器学习方法来处理这些数据,以探索多维参数空间内可能的相关性。我们通过使用Redshift 0.19 <Z <0.60的15个星系簇的Hubble Space望远镜(HST)图像来探索卷积神经网络(CNN)的分类功能,以识别Galaxy群集成员(CLMS),作为Clash和Hubble Frontier Field程序的一部分。我们根据基于Clash-VLT VIMOS计划与Muse观察结果相结合的广泛光谱信息来定义知识库。我们进行了各种测试,以量化CNN能够仅在成像信息的基础上识别群集成员。我们通过在幅度分布的微弱末端识别CLM来调查了CNN的CNN能力,以预测训练覆盖范围之外的源成员资格。我们发现,CNN的纯度完整性率〜90%,表明行为稳定,以及相对于群集红移的显着概括能力。我们得出的结论是,如果可以作为训练基础获得广泛的光谱信息,则提出的方法是基于目录的方法的有效替代方法,因为它具有避免光度测量值的优势,这在拥挤的集群核心中特别具有挑战性且耗时。作为副产物,我们以MAG(F814)<25鉴定了372个光度CLM,以完成四个Galaxy Clusters RX〜J2248-4431中的812光谱CLMS样本,Macs〜J0416-2403,Macs〜J1206-0847和Macs 〜J1206-0847和Macs 〜22222223。当将此技术应用于即将进行的调查中预期可用的数据时,它将是需要选择CLM选择的各种研究的有效工具,例如星系密度,光度函数和镜头质量重建。

The next generation of data-intensive surveys are bound to produce a vast amount of data, which can be dealt with using machine-learning methods to explore possible correlations within the multi-dimensional parameter space. We explore the classification capabilities of convolution neural networks (CNNs) to identify galaxy cluster members (CLMs) by using Hubble Space Telescope (HST) images of 15 galaxy clusters at redshift 0.19<z<0.60, observed as part of the CLASH and Hubble Frontier Field programmes. We used extensive spectroscopic information, based on the CLASH-VLT VIMOS programme combined with MUSE observations, to define the knowledge base. We performed various tests to quantify how well CNNs can identify cluster members on the basis of imaging information only. We investigated the CNN capability to predict source memberships outside the training coverage, by identifying CLMs at the faint end of the magnitude distributions. We find that the CNNs achieve a purity-completeness rate ~90%, demonstrating stable behaviour, along with a remarkable generalisation capability with respect to cluster redshifts. We concluded that if extensive spectroscopic information is available as a training base, the proposed approach is a valid alternative to catalogue-based methods because it has the advantage of avoiding photometric measurements, which are particularly challenging and time-consuming in crowded cluster cores. As a byproduct, we identified 372 photometric CLMs, with mag(F814)<25, to complete the sample of 812 spectroscopic CLMs in four galaxy clusters RX~J2248-4431, MACS~J0416-2403, MACS~J1206-0847 and MACS~J1149+2223. When this technique is applied to the data that are expected to become available from forthcoming surveys, it will be an efficient tool for a variety of studies requiring CLM selection, such as galaxy number densities, luminosity functions, and lensing mass reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源