论文标题
用于广义遗产本本特征的精制等几何分析
Refined isogeometric analysis for generalized Hermitian eigenproblems
论文作者
论文摘要
我们使用精制的iSODENEDRICTRIC分析(RIGA)来解决广义的Hermitian eigenproblems $({ku =λmu})$。 RIGA框架可以保留最大统一等级分析(IGA)离散的理想属性,同时通过通过添加零续率基础函数来分区计算域来降低解决方案的计算成本。结果,里加丰富了近似空间,并降低了自由度之间的互连。我们比较Riga的计算成本与IgA的计算成本在使用具有转换光谱转换的Lanczos Eigensolver时。当给定间隔$ {[λ_s,λ_e]} $中的所有eigenpairs都引起了人们的关注时,我们使用Spectrum SliCing Technique选择了几个shifts $ {σ_k\ in [λ_s,λ_e]} $。对于每个Shift $σ_K$,光谱转换矩阵$ {K-σ_KM}的分解成本驱动了本特征的总计算成本。载体的几个乘法矩阵$ {(k-σ_km)^{ - 1} m} $由向量遵循此分解。令$ p $为多项式函数的多项式程度,并假定IGA的最大连续性为$ {p-1} $,而里加(Riga)则引入$ c^0 $分离器以最大程度地减少分解成本。对于此设置,我们的理论估计值可以预测计算节省,以计算渐近制度中最多$ {O(p^2)} $的固定数量的特征,即大问题。然而,我们的数值测试表明,对于中等大小的本本特征,总计算成本降低为$ O(p)$。然而,里加提高了第一个$ n_0 $ eigenvalues和eigenfunctions的每个特征的准确性。在这里,我们允许$ n_0 $与原始最大 - 接触性IGA离散化的本征量总数一样大。
We use the refined isogeometric analysis (rIGA) to solve generalized Hermitian eigenproblems $({Ku=λMu})$. The rIGA framework conserves the desirable properties of maximum-continuity isogeometric analysis (IGA) discretizations while reducing the computation cost of the solution through partitioning the computational domain by adding zero-continuity basis functions. As a result, rIGA enriches the approximation space and decreases the interconnection between degrees of freedom. We compare computational costs of rIGA versus those of IGA when employing a Lanczos eigensolver with a shift-and-invert spectral transformation. When all eigenpairs within a given interval ${[λ_s,λ_e]}$ are of interest, we select several shifts ${σ_k\in[λ_s,λ_e]}$ using a spectrum slicing technique. For each shift $σ_k$, the cost of factorization of the spectral transformation matrix ${K-σ_k M}$ drives the total computational cost of the eigensolution. Several multiplications of the operator matrices ${(K-σ_k M)^{-1} M}$ by vectors follow this factorization. Let $p$ be the polynomial degree of basis functions and assume that IGA has maximum continuity of ${p-1}$, while rIGA introduces $C^0$ separators to minimize the factorization cost. For this setup, our theoretical estimates predict computational savings to compute a fixed number of eigenpairs of up to ${O(p^2)}$ in the asymptotic regime, that is, large problem sizes. Yet, our numerical tests show that for moderately-sized eigenproblems, the total computational cost reduction is $O(p)$. Nevertheless, rIGA improves the accuracy of every eigenpair of the first $N_0$ eigenvalues and eigenfunctions. Here, we allow $N_0$ to be as large as the total number of eigenmodes of the original maximum-continuity IGA discretization.