论文标题

堆叠层的注意力嵌入网络嵌入

Layer-stacked Attention for Heterogeneous Network Embedding

论文作者

Tran, Nhat, Gao, Jean

论文摘要

异质网络是一个可靠的数据抽象,可以模拟不同类型的实体,以各种方式进行交互。这种异质性带来了丰富的语义信息,但在汇总了对象之间的异质关系(尤其是高阶间接关系的物体之间)时提出了非平凡的挑战。在异质网络上进行表示学习的最新图形神经网络方法通常采用注意机制,通常仅根据直接链接对预测进行优化。此外,即使大多数深度学习方法可以通过构建更深的模型来汇总高阶信息,但这种方案可以降低可解释性的程度。为了克服这些挑战,我们探索了一个体系结构 - 层堆积的注意嵌入(Latte),该体系结构会自动分解每一层的高阶元关系,以提取每个节点的相关异质邻域结构。此外,通过依次堆叠层表示,学习的节点嵌入为不同邻域范围内不同类型的节点提供了更容易解释的聚合方案。我们在几个基准的异质网络数据集上进行了实验。在跨性和归纳节点分类任务中,拿铁与现有方法相比可以实现最先进的性能,同时提供了轻量级的模型。通过广泛的实验分析和可视化,该框架可以证明能够提取有关异质网络的信息见解的能力。

The heterogeneous network is a robust data abstraction that can model entities of different types interacting in various ways. Such heterogeneity brings rich semantic information but presents nontrivial challenges in aggregating the heterogeneous relationships between objects - especially those of higher-order indirect relations. Recent graph neural network approaches for representation learning on heterogeneous networks typically employ the attention mechanism, which is often only optimized for predictions based on direct links. Furthermore, even though most deep learning methods can aggregate higher-order information by building deeper models, such a scheme can diminish the degree of interpretability. To overcome these challenges, we explore an architecture - Layer-stacked ATTention Embedding (LATTE) - that automatically decomposes higher-order meta relations at each layer to extract the relevant heterogeneous neighborhood structures for each node. Additionally, by successively stacking layer representations, the learned node embedding offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges. We conducted experiments on several benchmark heterogeneous network datasets. In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches, all while offering a lightweight model. With extensive experimental analyses and visualizations, the framework can demonstrate the ability to extract informative insights on heterogeneous networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源