论文标题

MULTAV:乘法对抗视频

MultAV: Multiplicative Adversarial Videos

论文作者

Lo, Shao-Yuan, Patel, Vishal M.

论文摘要

大多数对抗机器学习研究都集中在添加剂攻击上,这些添加剂攻击为输入数据增加了对抗性扰动。另一方面,与图像识别问题不同,视频域中仅探索了少数攻击方法。在本文中,我们提出了一种针对视频识别模型,乘法对抗视频(MultAV)的新型攻击方法,该方法通过乘法对视频数据施加了扰动。 MultAV对添加剂对应物具有不同的噪声分布,因此挑战了针对抵抗添加剂对抗攻击的防御方法。此外,它不仅可以概括为LP-Norm攻击,具有称为比率约束的新的对手约束,而且还可以构成不同类型的物理攻击。实验结果表明,针对添加剂攻击的对手训练的模型对多AV的鲁棒性较低。

The majority of adversarial machine learning research focuses on additive attacks, which add adversarial perturbation to input data. On the other hand, unlike image recognition problems, only a handful of attack approaches have been explored in the video domain. In this paper, we propose a novel attack method against video recognition models, Multiplicative Adversarial Videos (MultAV), which imposes perturbation on video data by multiplication. MultAV has different noise distributions to the additive counterparts and thus challenges the defense methods tailored to resisting additive adversarial attacks. Moreover, it can be generalized to not only Lp-norm attacks with a new adversary constraint called ratio bound, but also different types of physically realizable attacks. Experimental results show that the model adversarially trained against additive attack is less robust to MultAV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源