论文标题

一般视线:通过元强化学习改善交通信号控制的环境概括

GeneraLight: Improving Environment Generalization of Traffic Signal Control via Meta Reinforcement Learning

论文作者

Liu, Chang, Zhang, Huichu, Zhang, Weinan, Zheng, Guanjie, Yu, Yong

论文摘要

交通拥堵问题一直是现代城市的关注点。为了减轻交通拥堵,研究人员使用强化学习(RL)来开发更好的交通信号控制(TSC)算法。但是,大多数RL模型在相同的交通流环境中进行了训练和测试,这导致了严重的过度拟合问题。由于现实世界中的交通流量环境一直在变化,因此由于缺乏概括能力,这些模型几乎无法应用。此外,有限的可访问流量数据在测试模型的概括能力方面带来了额外的困难。在本文中,我们设计了一种基于Wasserstein生成对抗网络的新型交通流量生成器,以生成足够多的多样化和优质的交通流,并使用它们来建立适当的培训和测试环境。然后,我们提出了一个元RL TSC框架一般视图,以提高TSC模型的概括能力。一般视觉通过结合流量聚类和模型不合时宜的元学习的概念来提高概括性能。我们在多个现实世界数据集上进行了广泛的实验,以显示一般视图在推广到不同流量流方面的出色性能。

The heavy traffic congestion problem has always been a concern for modern cities. To alleviate traffic congestion, researchers use reinforcement learning (RL) to develop better traffic signal control (TSC) algorithms in recent years. However, most RL models are trained and tested in the same traffic flow environment, which results in a serious overfitting problem. Since the traffic flow environment in the real world keeps varying, these models can hardly be applied due to the lack of generalization ability. Besides, the limited number of accessible traffic flow data brings extra difficulty in testing the generalization ability of the models. In this paper, we design a novel traffic flow generator based on Wasserstein generative adversarial network to generate sufficient diverse and quality traffic flows and use them to build proper training and testing environments. Then we propose a meta-RL TSC framework GeneraLight to improve the generalization ability of TSC models. GeneraLight boosts the generalization performance by combining the idea of flow clustering and model-agnostic meta-learning. We conduct extensive experiments on multiple real-world datasets to show the superior performance of GeneraLight on generalizing to different traffic flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源