论文标题

将Zeckendorf的定理概括为均匀的线性复发,II

Generalizing Zeckendorf's Theorem to Homogeneous Linear Recurrences, II

论文作者

Martinez, Thomas C., Miller, Steven J., Mizgerd, Clayton, Murphy, Jack, Sun, Chenyang

论文摘要

Zeckendorf的定理指出,每个正整数都可以独特地写入非连续移位的fi​​bonacci数字$ \ {f_n \} $的总和,我们将$ f_1 = 1 $和$ f_2 = 2 $。对于任何正线性复发序列(PLR),这已被推广,该序列是非正式的,它是满足均匀线性复发的序列,并具有阳性的前导系数和非阴性整数系数。在本文和前面的论文中,我们提供了两种方法,以研究领先系数为零的线性复发,其次是非阴性整数系数,通过两种不同的方法,指数之间的指数相对较好(缩写为ZLRR)之间存在差异。第一种方法涉及概括在Koloğlu,Kopp,Miller和Wang中发现的PLR的法律分解的定义。我们证明,每个正整数$ n $都使用贪婪算法对任何ZLRR都有法律分解。我们还表明,特定的ZLRR家族失去了分解的独特性。第二种方法将ZLRR转换为具有相同增长率的PLRR。我们开发了零算法,这是一种强大的辅助工具,用于分析线性复发序列的行为。我们使用它来证明一个非常普遍的结果,可以保证某些复发之间转换的可能性,并开发一种方法来快速确定序列是否偏离$+\ iffty $或$ - \ \ \ infty $,给定有任何实际的初始值。本文研究了第二种方法。

Zeckendorf's theorem states that every positive integer can be written uniquely as the sum of non-consecutive shifted Fibonacci numbers $\{F_n\}$, where we take $F_1=1$ and $F_2=2$. This has been generalized for any Positive Linear Recurrence Sequence (PLRS), which informally is a sequence satisfying a homogeneous linear recurrence with a positive leading coefficient and non-negative integer coefficients. In this and the preceding paper we provide two approaches to investigate linear recurrences with leading coefficient zero, followed by non-negative integer coefficients, with differences between indices relatively prime (abbreviated ZLRR), via two different approaches. The first approach involves generalizing the definition of a legal decomposition for a PLRS found in Koloğlu, Kopp, Miller and Wang. We prove that every positive integer $N$ has a legal decomposition for any ZLRR using the greedy algorithm. We also show that a specific family of ZLRRs lost uniqueness of decompositions. The second approach converts a ZLRR to a PLRR that has the same growth rate. We develop the Zeroing Algorithm, a powerful helper tool for analyzing the behavior of linear recurrence sequences. We use it to prove a very general result that guarantees the possibility of conversion between certain recurrences, and develop a method to quickly determine whether a sequence diverges to $+\infty$ or $-\infty$, given any real initial values. This paper investigates the second approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源