论文标题

近高斯分布,用于与异性疾病不确定性建模离散恒星速度数据

Near-Gaussian distributions for modelling discrete stellar velocity data with heteroskedastic uncertainties

论文作者

Sanders, Jason L., Evans, N. Wyn

论文摘要

一般而言,恒星示踪剂的速度分布表现出弱的非高斯语言编码有关银河系轨道组成和潜在潜力的信息。测量非高斯性的标准解决方案涉及构建一个可以产生负概率密度区域的串联膨胀(例如高斯 - 铁矿序列)。对于使用异性疾病的不确定性建模离散数据,这是一个重要的问题。在这里,我们介绍了一种通过具有高斯分布的给定内核的卷积来构建正定概率分布的方法。观察性不确定性进一步的卷积是微不足道的。所得分布的统计数据(矩和累积物)受内核分布的约束。两个内核(均匀和拉普拉斯)为高斯 - 热线系列提供了简单的置换式替换,用于负偏度的负多峰型分布。我们通过应用于矮球星系上的真实和模拟的视线速度数据集的应用来证明我们的方法的力量,在矮球星系上,峰度表明轨道各向异性,因此可以破坏大群体反应型变性,以识别cused cused cused custed custed custed coldus deardus deartus deartus deartus versus dearts profiles。关于Fornax矮人球形星系的数据表明阳性过剩峰度,因此有利于核心的暗物质谱。尽管设计用于离散数据,但新模型的分析傅立叶变换也使它们适合光谱拟合,这可以通过避免在视线速度分布中避免非物理负翼来改善高质量数据的拟合。

The velocity distributions of stellar tracers in general exhibit weak non-Gaussianity encoding information on the orbital composition of a galaxy and the underlying potential. The standard solution for measuring non-Gaussianity involves constructing a series expansion (e.g. the Gauss-Hermite series) which can produce regions of negative probability density. This is a significant issue for the modelling of discrete data with heteroskedastic uncertainties. Here, we introduce a method to construct positive-definite probability distributions by the convolution of a given kernel with a Gaussian distribution. Further convolutions by observational uncertainties are trivial. The statistics (moments and cumulants) of the resulting distributions are governed by the kernel distribution. Two kernels (uniform and Laplace) offer simple drop-in replacements for a Gauss-Hermite series for negative and positive excess kurtosis distributions with the option of skewness. We demonstrate the power of our method by an application to real and mock line-of-sight velocity datasets on dwarf spheroidal galaxies, where kurtosis is indicative of orbital anisotropy and hence a route to breaking the mass-anisotropy degeneracy for the identification of cusped versus cored dark matter profiles. Data on the Fornax dwarf spheroidal galaxy indicate positive excess kurtosis and hence favour a cored dark matter profile. Although designed for discrete data, the analytic Fourier transforms of the new models also make them appropriate for spectral fitting, which could improve the fits of high quality data by avoiding unphysical negative wings in the line-of-sight velocity distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源