论文标题
光子数依赖于腔的汉密尔顿工程
Photon-Number-Dependent Hamiltonian Engineering for Cavities
论文作者
论文摘要
空腔谐振器是量子技术的有前途的资源,而腔的本地非线性相互作用通常太弱,无法提供提供复杂的目标操作所需的量子控制水平。在这里,我们调查了一种使用Ancilla Qubits来设计目标腔的目标Hamiltonian。通过非振动驱动散热耦合的Ancilla Qubit,我们开发了一种优化的方法来设计一种任意光子数依赖性(PND)的Hamiltonian的腔体,同时最大程度地减少了操作误差。工程化的汉密尔顿人承认了各种应用,包括取消不良的腔自我相互作用,为量子模拟创造高阶非线性,并设计量子门与噪声弹性。我们的方案可以通过超导电路系统中的微波腔和transmon矩阵来实现。
Cavity resonators are promising resources for quantum technology, while native nonlinear interactions for cavities are typically too weak to provide the level of quantum control required to deliver complex targeted operations. Here we investigate a scheme to engineer a target Hamiltonian for photonic cavities using ancilla qubits. By off-resonantly driving dispersively coupled ancilla qubits, we develop an optimized approach to engineering an arbitrary photon-number-dependent (PND) Hamiltonian for the cavities while minimizing the operation errors. The engineered Hamiltonian admits various applications including canceling unwanted cavity self-Kerr interactions, creating higher-order nonlinearities for quantum simulations, and designing quantum gates resilient to noise. Our scheme can be implemented with coupled microwave cavities and transmon qubits in superconducting circuit systems.