论文标题
朋友和trangers图的典型和极端方面
Typical and Extremal Aspects of Friends-and-Strangers Graphs
论文作者
论文摘要
给定图形$ x $和$ y $带有顶点套装$ v(x)$和$ v(y)$相同的基数,朋友和trangers graph $ \ mathsf {fs}(fs}(x,y)$是其顶点的图形,其顶点集的所有bijections us canceptions $ c $σ:对于两个相邻的顶点$ a,b \ in v(x)$,因此$σ(a)$和$σ(b)$在$ y $中相邻。人们可以询问这些朋友和纠缠的最根本的问题是它们是否已连接。我们从两个不同的角度解决了这个问题。首先,我们通过证明$ x $和$ y $是独立的Erdős-rényi随机图,带有$ n $ dertices和Edge概率$ p $,我们解决了“典型” $ x $和$ y $的情况,那么阈值可能保证$ \ mathsf {x,x,x,x,x,x,y $ p} $ p $ p $ p $ $ p = o($ p = n $ o(o)。其次,我们通过证明$ n $ vertex Graphs $ x $和$ y $的最小程度确保了$ \ mathsf {fs}(x,y)$的连接性在$ 3N/5+o(1)$(1)$(1)$(9N/14/14/14+O(1)$(1)$(1)$(1)$(1)$(1)$(1)$(1)$(1)$(1)$(1)$(1),我们通过证明了最小的最小程度来解决“极端” $ x $和$ y $的情况。当$ x $和$ y $是双方时,均等障碍力$ \ mathsf {fs}(x,y)$要断开连接。在这种两部分设置中,我们证明了类似的“典型”和“极端”结果,涉及$ \ mathsf {fs}}(x,y)$具有$ 2 $连接的组件;对于极端问题,我们获得了几乎确切的结果。
Given graphs $X$ and $Y$ with vertex sets $V(X)$ and $V(Y)$ of the same cardinality, the friends-and-strangers graph $\mathsf{FS}(X,Y)$ is the graph whose vertex set consists of all bijections $σ:V(X)\to V(Y)$, where two bijections $σ$ and $σ'$ are adjacent if they agree everywhere except for two adjacent vertices $a,b \in V(X)$ such that $σ(a)$ and $σ(b)$ are adjacent in $Y$. The most fundamental question that one can ask about these friends-and-strangers graphs is whether or not they are connected; we address this problem from two different perspectives. First, we address the case of "typical" $X$ and $Y$ by proving that if $X$ and $Y$ are independent Erdős-Rényi random graphs with $n$ vertices and edge probability $p$, then the threshold probability guaranteeing the connectedness of $\mathsf{FS}(X,Y)$ with high probability is $p=n^{-1/2+o(1)}$. Second, we address the case of "extremal" $X$ and $Y$ by proving that the smallest minimum degree of the $n$-vertex graphs $X$ and $Y$ that guarantees the connectedness of $\mathsf{FS}(X,Y)$ is between $3n/5+O(1)$ and $9n/14+O(1)$. When $X$ and $Y$ are bipartite, a parity obstruction forces $\mathsf{FS}(X,Y)$ to be disconnected. In this bipartite setting, we prove analogous "typical" and "extremal" results concerning when $\mathsf{FS}(X,Y)$ has exactly $2$ connected components; for the extremal question, we obtain a nearly exact result.