论文标题
多语言音乐流派嵌入,用于有效的跨语性音乐项目注释
Multilingual Music Genre Embeddings for Effective Cross-Lingual Music Item Annotation
论文作者
论文摘要
用音乐流派注释音乐项目对于音乐推荐和信息检索至关重要,但鉴于音乐流派是主观的概念,但具有挑战性。最近,为了明确考虑这种主观性,音乐项目的注释被建模为翻译任务:预测从源自其他标签系统的一组音乐流派标签中,在目标词汇或分类系统(TAG系统)中,其音乐类型的音乐类型。但是,没有平行的语料库,以前的解决方案无法以其他语言处理标签系统,仅限于英语语言。在这里,通过学习多语言音乐类型的嵌入,我们可以启用跨语性音乐流派翻译而不依赖平行语料库。首先,我们在预训练的单词嵌入式上应用成分函数来表示多字标签。第二,我们通过利用修改后的翻新算法来利用多语言音乐流派图形将标签表示形式调整为音乐域。实验表明我们的方法:1)有效地用多种语言(英语,法语和西班牙语)翻译了跨标签系统的音乐流派; 2)在英语多源翻译任务中优于先前的基线。我们公开发布新的多语言数据和代码。
Annotating music items with music genres is crucial for music recommendation and information retrieval, yet challenging given that music genres are subjective concepts. Recently, in order to explicitly consider this subjectivity, the annotation of music items was modeled as a translation task: predict for a music item its music genres within a target vocabulary or taxonomy (tag system) from a set of music genre tags originating from other tag systems. However, without a parallel corpus, previous solutions could not handle tag systems in other languages, being limited to the English-language only. Here, by learning multilingual music genre embeddings, we enable cross-lingual music genre translation without relying on a parallel corpus. First, we apply compositionality functions on pre-trained word embeddings to represent multi-word tags.Second, we adapt the tag representations to the music domain by leveraging multilingual music genres graphs with a modified retrofitting algorithm. Experiments show that our method: 1) is effective in translating music genres across tag systems in multiple languages (English, French and Spanish); 2) outperforms the previous baseline in an English-language multi-source translation task. We publicly release the new multilingual data and code.