论文标题
DEEPC2:AI驱动的秘密命令和OSN的控制
DeepC2: AI-powered Covert Command and Control on OSNs
论文作者
论文摘要
命令和控制(C&C)在攻击中很重要。它将命令从攻击者传输到受损的主机中的恶意软件。目前,一些攻击者在C&C任务中使用在线社交网络(OSN)。 OSN的C&C中有两个主要问题。首先,恶意软件找到攻击者的过程是可逆的。如果防御者分析了恶意软件样本,则在发布命令之前将暴露攻击者。其次,以普通或加密形式的命令被OSN视为异常内容,这会引起异常并触发攻击者的限制。防御者暴露后可以限制攻击者。在这项工作中,我们建议在OSN上使用AI驱动的C&C DEEPC2来解决这些问题。对于可逆的硬编码,恶意软件使用神经网络模型找到了攻击者。攻击者的头像被转换为一批特征向量,并且防守者无法使用模型和特征向量提前恢复头像。为了求解OSN上的异常内容,哈希碰撞和文本数据扩展用于将命令嵌入正常内容中。 Twitter上的实验表明,可以有效地生成命令包裹的推文。恶意软件可以在OSN上秘密地找到攻击者。安全分析表明,很难提前恢复攻击者的标识符。
Command and control (C&C) is important in an attack. It transfers commands from the attacker to the malware in the compromised hosts. Currently, some attackers use online social networks (OSNs) in C&C tasks. There are two main problems in the C&C on OSNs. First, the process for the malware to find the attacker is reversible. If the malware sample is analyzed by the defender, the attacker would be exposed before publishing the commands. Second, the commands in plain or encrypted form are regarded as abnormal contents by OSNs, which would raise anomalies and trigger restrictions on the attacker. The defender can limit the attacker once it is exposed. In this work, we propose DeepC2, an AI-powered C&C on OSNs, to solve these problems. For the reversible hard-coding, the malware finds the attacker using a neural network model. The attacker's avatars are converted into a batch of feature vectors, and the defender cannot recover the avatars in advance using the model and the feature vectors. To solve the abnormal contents on OSNs, hash collision and text data augmentation are used to embed commands into normal contents. The experiment on Twitter shows that command-embedded tweets can be generated efficiently. The malware can find the attacker covertly on OSNs. Security analysis shows it is hard to recover the attacker's identifiers in advance.