论文标题

Scikit网络:Python中的图形分析

Scikit-network: Graph Analysis in Python

论文作者

Bonald, Thomas, de Lara, Nathan, Lutz, Quentin, Charpentier, Bertrand

论文摘要

Scikit-Network是一个受Scikit-Learn启发的Python软件包,用于分析大图。图由Scipy稀疏CSR格式的邻接矩阵表示。该软件包提供了用于排名,聚类,分类,嵌入和可视化图的节点的最新算法。通过快速矩阵矢量产物(使用Scipy),编译代码(使用Cython)和并行处理的混合,可以实现高性能。该软件包是根据BSD许可证分配的,依赖项仅限于Numpy和Scipy。它与Python 3.6兼容,并且更新。源代码,文档和安装说明可在线提供。

Scikit-network is a Python package inspired by scikit-learn for the analysis of large graphs. Graphs are represented by their adjacency matrix in the sparse CSR format of SciPy. The package provides state-of-the-art algorithms for ranking, clustering, classifying, embedding and visualizing the nodes of a graph. High performance is achieved through a mix of fast matrix-vector products (using SciPy), compiled code (using Cython) and parallel processing. The package is distributed under the BSD license, with dependencies limited to NumPy and SciPy. It is compatible with Python 3.6 and newer. Source code, documentation and installation instructions are available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源