论文标题

相似性II相关:poncleet三个周期和brocard porism

Related by Similarity II: Poncelet 3-Periodics in the Homothetic Pair and the Brocard Porism

论文作者

Reznik, Dan, Garcia, Ronaldo

论文摘要

以前,我们在椭圆台球(共聚焦对)中表明了3个周期性的家族是在可变三角形(具有非浓度,固定固定incircle and Crabcircle)的可变相似性变换下的图像。两个家庭都保留了伊拉迪乌斯与圆周的比例,因此也保留了余弦之和。这与一个相似性保持角度的事实一致。在这里,我们研究了两个新的poncleet 3周期家庭也通过可变相似性彼此绑定:(i)第一个属于一对同心,同性恋椭圆形中的第一个,以及(ii)第二个非脑子,称为brocard porism:固定的包围和Brocard inellipse。这个家族的Brocard点处于Inellipse的焦点位置。一个关键的常见不变是brocard角,因此是cotangents的总和。这提出了一个有趣的问题:鉴于一个非集中的poncleet家族(限制或不限制外圆锥为圆),是否总是在同心,轴平衡的椭圆和/或圆锥对中找到类似的doppelgänger?

Previously we showed the family of 3-periodics in the elliptic billiard (confocal pair) is the image under a variable similarity transform of poristic triangles (those with non-concentric, fixed incircle and circumcircle). Both families conserve the ratio of inradius to circumradius and therefore also the sum of cosines. This is consisten with the fact that a similarity preserves angles. Here we study two new Poncelet 3-periodic families also tied to each other via a variable similarity: (i) a first one interscribed in a pair of concentric, homothetic ellipses, and (ii) a second non-concentric one known as the Brocard porism: fixed circumcircle and Brocard inellipse. The Brocard points of this family are stationary at the foci of the inellipse. A key common invariant is the Brocard angle, and therefore the sum of cotangents. This raises an interesting question: given a non-concentric Poncelet family (limited or not to the outer conic being a circle), can a similar doppelgänger always be found interscribed in a concentric, axis-aligned ellipse and/or conic pair?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源