论文标题

测量神经网络中的信息传输

Measuring Information Transfer in Neural Networks

论文作者

Zhang, Xiao, Li, Xingjian, Dou, Dejing, Wu, Ji

论文摘要

量化神经网络模型中的信息内容基本上是估计该模型的Kolmogorov复杂性。神经网络上的临时编码的最新成功指出了一种有前途的途径,即导致模型的有效描述长度。我们根据术语编码在神经网络模型中对可推广信息提出了一个实用的度量,我们将其称为信息传输($ l_ {it} $)。从理论上讲,$ l_ {it} $是对模型信息内容的可推广部分的估计。在实验中,我们表明$ l_ {it} $与可推广的信息一致相关,可以用作模型或数据集中模式或“知识”的度量。因此,$ l_ {it} $可以用作深度学习的有用分析工具。在本文中,我们将$ l_ {it} $应用于数据集中的信息,评估转移学习中的表示模型,并分析灾难性的遗忘和持续学习算法。 $ l_ {it} $提供了一个信息观点,可帮助我们发现对神经网络学习的新见解。

Quantifying the information content in a neural network model is essentially estimating the model's Kolmogorov complexity. Recent success of prequential coding on neural networks points to a promising path of deriving an efficient description length of a model. We propose a practical measure of the generalizable information in a neural network model based on prequential coding, which we term Information Transfer ($L_{IT}$). Theoretically, $L_{IT}$ is an estimation of the generalizable part of a model's information content. In experiments, we show that $L_{IT}$ is consistently correlated with generalizable information and can be used as a measure of patterns or "knowledge" in a model or a dataset. Consequently, $L_{IT}$ can serve as a useful analysis tool in deep learning. In this paper, we apply $L_{IT}$ to compare and dissect information in datasets, evaluate representation models in transfer learning, and analyze catastrophic forgetting and continual learning algorithms. $L_{IT}$ provides an information perspective which helps us discover new insights into neural network learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源