论文标题

Cogtree:无偏见的场景图生成的认知树损失

CogTree: Cognition Tree Loss for Unbiased Scene Graph Generation

论文作者

Yu, Jing, Chai, Yuan, Wang, Yujing, Hu, Yue, Wu, Qi

论文摘要

场景图是鼓励视觉理解和推理的图像的语义抽象。但是,在现实世界中面对偏见的数据时,场景图生成(SGG)的性能并不令人满意。传统的偏见研究主要是从平衡数据分布或学习公正模型和表示的观点的研究,忽略了有偏见的类别之间的相关性。在这项工作中,我们从新颖的认知角度分析了这个问题:从偏见的预测中自动构建层次认知结构,并导航该关系以定位关系,从而使尾巴关系在粗到5的模式下更加关注。为此,我们提出了一种新颖的伪造认知树(Cogtree)损失,以实现无偏见的SGG。我们首先建立一个认知结构Cogtree,以基于偏见的SGG模型的预测来组织关系。 Cogtree首先区分了明显不同的关系,然后专注于一小部分易于混淆的关系。然后,我们为这种认知结构提出了一种偏见的损失,该损失支持正确的关系,为正确的关系而言,这支持了粗到5的区别。损失是模型不平衡的,并且始终如一地提高了几种最先进模型的性能。该代码可在以下网址获得:https://github.com/cyvincent/scene-graph-transformer-cogtree。

Scene graphs are semantic abstraction of images that encourage visual understanding and reasoning. However, the performance of Scene Graph Generation (SGG) is unsatisfactory when faced with biased data in real-world scenarios. Conventional debiasing research mainly studies from the view of balancing data distribution or learning unbiased models and representations, ignoring the correlations among the biased classes. In this work, we analyze this problem from a novel cognition perspective: automatically building a hierarchical cognitive structure from the biased predictions and navigating that hierarchy to locate the relationships, making the tail relationships receive more attention in a coarse-to-fine mode. To this end, we propose a novel debiasing Cognition Tree (CogTree) loss for unbiased SGG. We first build a cognitive structure CogTree to organize the relationships based on the prediction of a biased SGG model. The CogTree distinguishes remarkably different relationships at first and then focuses on a small portion of easily confused ones. Then, we propose a debiasing loss specially for this cognitive structure, which supports coarse-to-fine distinction for the correct relationships. The loss is model-agnostic and consistently boosting the performance of several state-of-the-art models. The code is available at: https://github.com/CYVincent/Scene-Graph-Transformer-CogTree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源