论文标题

零星群体的新特征

A New Characterization of Sporadic Groups

论文作者

Wang, Zhongbi, Lv, Heng, Yan, Yanxiong, Chen, Guiyun

论文摘要

让$ g $为有限的组,$ n $ a正整数。 $π(n)$表示$ n $和$π(g)=π(| g |)$的所有素数组的集合。由Grenberg和Kegel定义的Prime Graph $γ(g)$ $ G $是一个图形,其顶点套件为$π(g)$,两个dertices $ p,\ q $ in $π(g)$ in $ g $ in Edge of Edge且仅当$ G $包含订单$ PQ $的元素时。在本文中,获得了零星简单组的新特征,也就是说,如果$ g $是有限的组,而零星简单组的$ s $。然后,仅当$ g \ cong s $时,仅当$ | g | = | s | $和$γ(g)$被断开连接。这种表征统一了可以得出结论的几种特征,该组具有非连接的质量图,因此,零星简单组的几个已知特征成为这种新特征的推论。

Let $G$ be a finite group, $n$ a positive integer. $π(n)$ denotes the set of all prime divisors of $n$ and $π(G)=π(|G|)$. The prime graph $Γ(G)$ of $G$, defined by Grenberg and Kegel, is a graph whose vertex set is $π(G)$, two vertices $p,\ q$ in $π(G)$ joined by an edge if and only if $G$ contains an element of order $pq$. In this article, a new characterization of sporadic simple groups is obtained, that is, if $G$ is a finite group and $S$ a sporadic simple group. Then $G\cong S$ if and only if $|G|=|S|$ and $Γ(G)$ is disconnected. This characterization unifies the several characterizations that can conclude the group has non-connected prime graphs, hence several known characterizations of sporadic simple groups become the corollaries of this new characterization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源