论文标题
卷积辍学网络中患者特异性心血管建模的几何不确定性
Geometric Uncertainty in Patient-Specific Cardiovascular Modeling with Convolutional Dropout Networks
论文作者
论文摘要
我们提出了一种新的方法,以从临床水生图像体积的情况下从患者特异性心血管模型的条件分布中生成样品。首先,使用回归方法对具有辍学层的卷积神经网络结构进行了训练,以实现贝叶斯对血管腔表面的估算。然后将该网络集成到路径规划的特定于患者的建模管道中,以生成心血管模型家族。我们通过量化几何不确定性对三种患者特异性解剖学的血液动力学的影响来证明我们的方法,一个主动脉分叉,腹主动脉瘤和左冠状动脉的亚模型。提出的方法中引入的关键创新是直接从训练数据中学习几何不确定性的能力。结果表明,几何不确定性如何产生与壁剪应力和速度幅度的不确定性相当或更大的变异系数,但对压力的影响有限。具体而言,这对于以小血管尺寸为特征的解剖体是正确的,对于在网络训练中很少见到的局部血管病变。
We propose a novel approach to generate samples from the conditional distribution of patient-specific cardiovascular models given a clinically aquired image volume. A convolutional neural network architecture with dropout layers is first trained for vessel lumen segmentation using a regression approach, to enable Bayesian estimation of vessel lumen surfaces. This network is then integrated into a path-planning patient-specific modeling pipeline to generate families of cardiovascular models. We demonstrate our approach by quantifying the effect of geometric uncertainty on the hemodynamics for three patient-specific anatomies, an aorto-iliac bifurcation, an abdominal aortic aneurysm and a sub-model of the left coronary arteries. A key innovation introduced in the proposed approach is the ability to learn geometric uncertainty directly from training data. The results show how geometric uncertainty produces coefficients of variation comparable to or larger than other sources of uncertainty for wall shear stress and velocity magnitude, but has limited impact on pressure. Specifically, this is true for anatomies characterized by small vessel sizes, and for local vessel lesions seen infrequently during network training.