论文标题

用眼睛跟踪的胸部X射线数据集的创建和验证AI开发的报告和报告说法

Creation and Validation of a Chest X-Ray Dataset with Eye-tracking and Report Dictation for AI Development

论文作者

Karargyris, Alexandros, Kashyap, Satyananda, Lourentzou, Ismini, Wu, Joy, Sharma, Arjun, Tong, Matthew, Abedin, Shafiq, Beymer, David, Mukherjee, Vandana, Krupinski, Elizabeth A, Moradi, Mehdi

论文摘要

我们开发了一个丰富的胸部X射线(CXR)图像数据集,以协助研究人员进行人工智能。使用眼动追踪系统收集数据,同时对1,083张CXR图像进行了审查并报告了数据。该数据集包含以下对齐数据:CXR图像,转录放射学报告文本,放射科医生的听写音频和眼睛凝视坐标。我们希望该数据集可以为各种研究领域做出贡献,特别是针对可解释和多模式的深度学习 /机器学习方法。此外,疾病分类和定位,自动放射学报告产生和人机相互作用的研究者可以从这些数据中受益。我们报告了使用Eye Gaze数据集生成的注意力图来显示该数据的潜在效用的深度学习实验。

We developed a rich dataset of Chest X-Ray (CXR) images to assist investigators in artificial intelligence. The data were collected using an eye tracking system while a radiologist reviewed and reported on 1,083 CXR images. The dataset contains the following aligned data: CXR image, transcribed radiology report text, radiologist's dictation audio and eye gaze coordinates data. We hope this dataset can contribute to various areas of research particularly towards explainable and multimodal deep learning / machine learning methods. Furthermore, investigators in disease classification and localization, automated radiology report generation, and human-machine interaction can benefit from these data. We report deep learning experiments that utilize the attention maps produced by eye gaze dataset to show the potential utility of this data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源