论文标题

$ gl_2(\ mathbb {q} _p)$的家庭中的agimimple mod mod $ p $ langlands通讯

A semisimple mod $p$ Langlands correspondence in families for $GL_2(\mathbb{Q}_p)$

论文作者

Pépin, Cédric, Schmidt, Tobias

论文摘要

这是Arxiv:2007.01364v1的续集。令$ f $为任何本地字段,具有残留特征$ p> 0 $,而$ \ nathcal {h}^{(1)} _ {\ overline {\ mathbb {f}} _ p} _是mod $ p $ p $ p $ p $ -iwahori hecke yewahori hecke algebra of $ $ \_ mathbf} {gl_ f)在Arxiv:2007.01364v1中,我们已经构建了$ \ Mathcal {h}^{(1)} _ {\ overline {\ Mathbb {f}} _ p} $ - 通过某些模块的模块的参数化$ \ wideHat {\ MathBf {gl_2}}(\ edropline {\ Mathbb {f}} _ p)$ - SATAKE参数,以及$ \ Mathcal {H}^{(1)} _ {\ Matheres {\ MathBB} $ \ Mathcal {h}^{(1)} {\ p}的反;在这里,我们让$ f = \ mathbb {q} _p $(和$ p \ geq 5 $),然后从$ \ wideHat {\ mathbf {gl_2}}构建形态, $ \ wideHat {\ mathbf {gl_2}}}(\ overline {\ mathbb {f}} _ p)$ - langlands参数。结果,我们在Breuil的Semisimple Mod $ p $ p $ langlands的家族中获得了一个版本$ \ mathbf {gl_2}(\ Mathbb {q} _p)$具有中心字符。由于emerton-gee Moduli空间的emerton-gee $ \ wideHat {\ mathbf {gl_2}}}(\ edimelline {\ mathbb {f}} _ p)$ - GALOIS组$ {\ rm GAL} { \ Mathbb {q} _p)$。

This is the sequel to arXiv:2007.01364v1. Let $F$ be any local field with residue characteristic $p>0$, and $\mathcal{H}^{(1)}_{\overline{\mathbb{F}}_p}$ be the mod $p$ pro-$p$-Iwahori Hecke algebra of $\mathbf{GL_2}(F)$. In arXiv:2007.01364v1 we have constructed a parametrization of the $\mathcal{H}^{(1)}_{\overline{\mathbb{F}}_p}$-modules by certain $\widehat{\mathbf{GL_2}}(\overline{\mathbb{F}}_p)$-Satake parameters, together with an antispherical family of $\mathcal{H}^{(1)}_{\overline{\mathbb{F}}_p}$-modules. Here we let $F=\mathbb{Q}_p$ (and $p\geq 5$) and construct a morphism from $\widehat{\mathbf{GL_2}}(\overline{\mathbb{F}}_p)$-Satake parameters to $\widehat{\mathbf{GL_2}}(\overline{\mathbb{F}}_p)$-Langlands parameters. As a result, we get a version in families of Breuil's semisimple mod $p$ Langlands correspondence for $\mathbf{GL_2}(\mathbb{Q}_p)$ and of Paškūnas' parametrization of blocks of the category of mod $p$ locally admissible smooth representations of $\mathbf{GL_2}(\mathbb{Q}_p)$ having a central character. The formulation of these results is possible thanks to the Emerton-Gee moduli space of semisimple $\widehat{\mathbf{GL_2}}(\overline{\mathbb{F}}_p)$-representations of the Galois group ${\rm Gal}(\overline{\mathbb{Q}}_p/ \mathbb{Q}_p)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源