论文标题
超平方的平方符号的阳性阳性扩展
Positivity-preserving extensions of sum-of-squares pseudomoments over the hypercube
论文作者
论文摘要
我们介绍了一种新方法,用于在HyperCube $ \ Mathbf {X} \ in \ {\ pm 1 \}^n $上构建高级总和下限。我们的方法构建了通过设计通过设计为阳性半芬矿的伪视觉,从而减轻了SOS下限的其他方法(例如伪校准)所常见的一些技术挑战。 我们给出了一般的“不一致”条件,在哪个程度2个假体可以扩展到较高程度的情况下。作为一种应用,我们将Sherrington-Kirkpatrick Hamiltonian的先前下限从4级到6度延长(但是,这包含在Ghosh等人的平行工作的更强结果中。作为支持我们建筑高度的证据,我们还表明,随机高级投影矩阵(一个更容易的情况)可以扩展到$ω(1)$。我们确定在低级别的情况下实现同样的主要障碍,并猜想,尽管我们的构造仍然正确地领导顺序,但它也需要下一阶调整。 我们的技术论点涉及两个独立兴趣思想的相互作用。首先,我们的假符号基质以某些多重多项式的多项式分配。该观察结果指导了我们的积极证明。其次,我们的假单位值是通过森林上的总和以图形方式描述的,其系数由莫比乌斯(Möbius)的函数给出了这些森林的部分顺序。这种连接指导了我们的证据表明假单胞菌满足超立方体约束。我们追踪我们的假单单可以满足超单行和阳性约束的原因,同时与多次多项式多项式和该möbius函数之间的组合关系同时满足。
We introduce a new method for building higher-degree sum-of-squares lower bounds over the hypercube $\mathbf{x} \in \{\pm 1\}^N$ from a given degree 2 lower bound. Our method constructs pseudoexpectations that are positive semidefinite by design, lightening some of the technical challenges common to other approaches to SOS lower bounds, such as pseudocalibration. We give general "incoherence" conditions under which degree 2 pseudomoments can be extended to higher degrees. As an application, we extend previous lower bounds for the Sherrington-Kirkpatrick Hamiltonian from degree 4 to degree 6. (This is subsumed, however, in the stronger results of the parallel work of Ghosh et al.) This amounts to extending degree 2 pseudomoments given by a random low-rank projection matrix. As evidence in favor of our construction for higher degrees, we also show that random high-rank projection matrices (an easier case) can be extended to degree $ω(1)$. We identify the main obstacle to achieving the same in the low-rank case, and conjecture that while our construction remains correct to leading order, it also requires a next-order adjustment. Our technical argument involves the interplay of two ideas of independent interest. First, our pseudomoment matrix factorizes in terms of certain multiharmonic polynomials. This observation guides our proof of positivity. Second, our pseudomoment values are described graphically by sums over forests, with coefficients given by the Möbius function of a partial ordering of those forests. This connection guides our proof that the pseudomoments satisfy the hypercube constraints. We trace the reason that our pseudomoments can satisfy both the hypercube and positivity constraints simultaneously to a combinatorial relationship between multiharmonic polynomials and this Möbius function.