论文标题
$ \ MATHBB {Z} _2 $拓扑阻塞超导顺序
$\mathbb{Z}_2$ Topologically Obstructed Superconducting Order
论文作者
论文摘要
我们提出了一类拓扑超导性,其中配对顺序为$ \ mathbb {z} _2 $在三维时间逆转不变系统中受到拓扑的阻塞。当两个费米表面与时间反向和镜像对称性相关时,例如在$ \ mathbb {z} _2 $ dirac半学中,弱耦合方案中的fermi-surac表面配对继承了乐队拓扑阻塞。结果,配对顺序在整个费米表面上不能很好地定义,并形成了u($ 1 $)单极谐波配对的时间反转概括。 $ \ mathbb {z} _2 $拓扑阻塞超导体的紧密结合模型是基于掺杂的$ \ mathbb {z} _2 $ dirac semimetal构建的,并展示了节点配对。在开放的边界,该系统表现出一对拓扑保护的表面状态。
We propose a class of topological superconductivity in which the pairing order is $\mathbb{Z}_2$ topologically obstructed in a three-dimensional time-reversal invariant system. When two Fermi surfaces are related by time-reversal and mirror symmetries, such as those in a $\mathbb{Z}_2$ Dirac semimetal, the inter-Fermi-surface pairing in the weak-coupling regime inherits the band topological obstruction. As a result, the pairing order cannot be well-defined over the entire Fermi surface and forms a time-reversal invariant generalization of U($1$) monopole harmonic pairing. A tight-binding model of the $\mathbb{Z}_2$ topologically obstructed superconductor is constructed based on a doped $\mathbb{Z}_2$ Dirac semimetal and exhibits nodal pairings. At an open boundary, the system exhibits a time-reversal pair of topologically protected surface states.