论文标题

在谐波函数的尺寸上

On the Dimension of the Space of Harmonic Functions on Transitive Shift Spaces

论文作者

Cioletti, L., Melo, L., Ruviaro, R., Silva, E. A.

论文摘要

在本文中,我们显示了一维统计力学中的相变与谐波函数空间的多样性,以扩展经典传输操作员。我们通过将经典的Ruelle-Perron-Frobenius理论扩展到低规则电位的领域来实现这一目标。这是通过建立相关保形度量的更精细的特性,并彻底开发一种获取适当构建的马尔可夫过程家族的最大特征空间信息的方法。我们的结果在有限和无限字母的情况下是有效的。给出了几种新应用以说明理论。例如,我们确定与低规则电位相关的大量平衡状态的支持,包括允许相变的平衡状态。此外,我们证明了平衡状态的功能中心极限定理的版本。该结果的一个显着方面是,它不需要关联的传输操作员的光谱差距。它对于可能与可能没有正相关的远程旋转系统有效,并且对于非本地可观察到。

In this paper, we show a new relation between phase transition in one-dimensional Statistical Mechanics and the multiplicity of the dimension of the space of harmonic functions for an extension of the classical transfer operator. We accomplish this by extending the classical Ruelle-Perron-Frobenius theory to the realm of low regular potentials. This is done by establishing finer properties of the associated conformal measures and thoroughly developing a method to obtain information on the maximal eigenspace of a suitably constructed family of Markov Processes. Our results are valid in the setting of finite and infinite alphabets. Several new applications are given to illustrate the theory. For example, we determine the support of a large class of equilibrium states associated with low regular potentials, including ones allowing phase transition. Additionally, we prove a version of the Functional Central Limit Theorem for equilibrium states. A remarkable aspect of this result is that it does not require the spectral gap property of the associated transfer operator. It is valid for long-range spins systems that might not be positively correlated and for non-local observables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源