论文标题
洛伦兹(Lorentzian
Lorentzian manifolds with shearfree congruences and Kähler-Sasaki geometry
论文作者
论文摘要
我们研究了lorentzian歧管$(m,g)dimension $ n \ geq 4 $的$,配备了最大扭曲的剪切无效的零矢量$ p_o $,叶子空间$ s = m/\ {\ exp t p p_o \} $是一个光滑的谱系。如果$ n = 2k $,商$ s = m/\ {\ exp t p_o \} $自然配备了接触类型的亚符号结构,并且在最有趣的情况下,它是一个常规的sasaki歧管,投影到量化的量子上,将量化的kähller歧管投射到真实的尺寸的量子上,$ 2K -2 $ 2k -2 $。 Going backwards through this line of ideas, for any quantisable Kähler manifold with associated Sasaki manifold $S$, we give the local description of all Lorentzian metrics $g$ on the total spaces $M$ of $A$-bundles $π: M \to S$, $A = S^1, \mathbb R$, such that the generator of the group action is a maximally twisting shearfree $g$-null矢量字段$ p_o $。我们还证明,在任何这样的Lorentzian歧管$(M,G)上,存在具有$ p_o $作为传播方向字段的非平凡的广义电磁平面波,可以将其视为经典$ 4 $ dimensional Robinson theorem的概括。我们终于在Einstein Constant的任何规定价值上构建了一个琐碎的捆绑包$ m = \ mathbb r \ times s $的爱因斯坦指标家族。如果$ \ dim m = 4 $,则以这种方式获得的RICCI平坦指标是众所周知的Taub-Nut指标。
We study Lorentzian manifolds $(M, g)$ of dimension $n\geq 4$, equipped with a maximally twisting shearfree null vector field $p_o$, for which the leaf space $S = M/\{\exp t p_o\}$ is a smooth manifold. If $n = 2k$, the quotient $S = M/\{\exp t p_o\}$ is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kähler manifold of real dimension $2k -2$. Going backwards through this line of ideas, for any quantisable Kähler manifold with associated Sasaki manifold $S$, we give the local description of all Lorentzian metrics $g$ on the total spaces $M$ of $A$-bundles $π: M \to S$, $A = S^1, \mathbb R$, such that the generator of the group action is a maximally twisting shearfree $g$-null vector field $p_o$. We also prove that on any such Lorentzian manifold $(M, g)$ there exists a non-trivial generalized electromagnetic plane wave having $p_o$ as propagating direction field, a result that can be considered as a generalization of the classical $4$-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle $M = \mathbb R \times S$ for any prescribed value of the Einstein constant. If $\dim M = 4$, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics.