论文标题

Bose-Einstein与螺旋旋转轨道偶联的稳定二维孤子复合物

Stable two-dimensional soliton complexes in Bose-Einstein condensates with helicoidal spin-orbit coupling

论文作者

Kartashov, Ya. V., Sherman, E. Ya., Malomed, B. A., Konotop, V. V.

论文摘要

我们表明,有吸引力的二维旋转玻璃物玻璃晶体冷凝水与螺旋形的空间周期性旋转轨道耦合(SOC)支持丰富的各种稳定的基本孤子和结合的孤子络合物。这种状态存在于周期性调制的SOC产生的频谱中属于半无限间隙的化学势。所有这些状态都存在于规范的一定阈值之上。基本孤子的化学潜力达到了最低带的底部,其轨迹是Bloch Momenta空间中的环,环的半径是SOC强度的非单调功能。孤子配合物的化学潜力无法达到带边缘。这些络合物是几个隔离基本孤子子的结合状态,其中心位于SOC调制阶段的局部最大值。从这个意义上讲,螺旋式SOC景观对孤子的影响与周期性的二维潜力相似。特别是,它可以补偿孤独子之间的排斥力,使其结束的状态保持稳定。发现了由两个和四个孤子(分别为偶极子和四极杆)构建的复合物的扩展稳定域。它们通常在化学势的临界值以下稳定。

We show that attractive two-dimensional spinor Bose-Einstein condensates with helicoidal spatially periodic spin-orbit coupling (SOC) support a rich variety of stable fundamental solitons and bound soliton complexes. Such states exist with chemical potentials belonging to the semi-infinite gap in the band spectrum created by the periodically modulated SOC. All these states exist above a certain threshold value of the norm. The chemical potential of fundamental solitons attains the bottom of the lowest band, whose locus is a ring in the space of Bloch momenta, and the radius of the ring is a non-monotonous function of the SOC strength. The chemical potential of soliton complexes does not attain the band edge. The complexes are bound states of several out-of-phase fundamental solitons whose centers are placed at local maxima of the SOC-modulation phase. In this sense, the impact of the helicoidal SOC landscape on the solitons is similar to that of a periodic two-dimensional potential. In particular, it can compensate repulsive forces between out-of-phase solitons, making their bound states stable. Extended stability domains are found for complexes built of two and four solitons (dipoles and quadrupoles, respectively). They are typically stable below a critical value of the chemical potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源