论文标题

Mo-Padgan:用于增强多目标优化的重新聚集工程设计

MO-PaDGAN: Reparameterizing Engineering Designs for Augmented Multi-objective Optimization

论文作者

Chen, Wei, Ahmed, Faez

论文摘要

多目标优化是解决许多工程设计问题的关键,其中设计参数已针对多个性能指标进行了优化。但是,优化结果高度依赖于设计的方式。研究人员表明,深层生成模型可以学习紧凑的设计表示,提供了一种新的参数化设计方式,以实现更快的收敛和改善的优化性能。尽管它们成功地捕获复杂的分布,但现有的生成模型在用于设计问题时面临三个挑战:1)生成的设计空间覆盖范围有限,2)生成器忽略了设计性能,而3)〜新的参数化无法代表训练数据以外的设计。为了应对这些挑战,我们提出了Mo-Padgan,该挑战将基于确定点过程的损失函数添加到生成对抗网络中,以同时对多样性和(多变量)性能进行建模。因此,Mo-Padgan可以改善生成设计的性能和覆盖范围,甚至可以产生超过训练数据的设计。在多目标优化中使用Mo-Padgan作为新的参数化时,即使训练数据不涵盖那些帕累托前部,我们也可以发现更好的帕累托前沿。在现实世界中的多目标式设计示例中,我们证明,与香草gan或其他最新的参数化方法相比,Mo-Padgan平均而言,超过180 \%的改善。

Multi-objective optimization is key to solving many Engineering Design problems, where design parameters are optimized for several performance indicators. However, optimization results are highly dependent on how the designs are parameterized. Researchers have shown that deep generative models can learn compact design representations, providing a new way of parameterizing designs to achieve faster convergence and improved optimization performance. Despite their success in capturing complex distributions, existing generative models face three challenges when used for design problems: 1) generated designs have limited design space coverage, 2) the generator ignores design performance, and 3)~the new parameterization is unable to represent designs beyond training data. To address these challenges, we propose MO-PaDGAN, which adds a Determinantal Point Processes based loss function to the generative adversarial network to simultaneously model diversity and (multi-variate) performance. MO-PaDGAN can thus improve the performances and coverage of generated designs, and even generate designs with performances exceeding those from training data. When using MO-PaDGAN as a new parameterization in multi-objective optimization, we can discover much better Pareto fronts even though the training data do not cover those Pareto fronts. In a real-world multi-objective airfoil design example, we demonstrate that MO-PaDGAN achieves, on average, an over 180\% improvement in the hypervolume indicator when compared to the vanilla GAN or other state-of-the-art parameterization methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源