论文标题

绘制外部1平面图进行了重新审视

Drawing outer-1-planar graphs revisited

论文作者

Biedl, Therese

论文摘要

在最近的一篇文章(Auer等人,Algorithmica 2016)中,据称每个外部1平面图都具有面积$ O(n \ log n)$的平面可见性表示。在本文中,我们表明这是错误的:有一些外部1平面图在任何平面图中都需要$ω(n^2)$区域。然后Wegive构造(使用交叉,但保留给定的外1平面嵌入),从而导致与O(n log N)区域的正交盒绘制,并且每个边缘最多有两个弯曲。

In a recent article (Auer et al, Algorithmica 2016) it was claimed that every outer-1-planar graph has a planar visibility representation of area $O(n\log n)$. In this paper, we show that this is wrong: There are outer-1-planar graphs that require $Ω(n^2)$ area in any planar drawing. Then wegive a construction (using crossings, but preserving a given outer-1-planar embedding) that results in an orthogonal box-drawing with O(n log n) area and at most two bends per edge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源