论文标题
通过统计学习对高阶微观结构信息预测渗透率
Predicting permeability via statistical learning on higher-order microstructural information
论文作者
论文摘要
定量结构 - 特性关系对于理解和预测复杂材料的物理特性至关重要。对于多孔材料中的流体流动,表征孔微结构的几何形状有助于预测渗透性,这是一种在材料科学,地球物理学和化学工程中广泛研究的关键特性。在这项工作中,我们通过线性回归和神经网络研究了不同结构描述符的可预测性。为此,创建了一个大型数据集,其中包括30,000个虚拟的多孔微观结构。我们使用晶格Boltzmann方法计算这些结构的渗透率,并使用单点相关函数(孔隙率,特定表面),两点表面表面,表面 - 表面 - 表面 - 和空隙 - 空隙相关函数以及地球侵犯函数以及地理位置检测器来表征孔隙空间几何形状。然后,我们使用这些描述符的不同组合研究了渗透性的预测。与仅阶数最低描述符(孔隙度和特定表面)的Kozeny-Carman回归相比,我们获得了性能的显着改善。我们发现,结合所有三个两点相关函数和曲折度提供了最佳的渗透性预测,而空隙 - 多个相关函数是最有用的个体描述符。此外,孔隙率,特定表面和地球曲折的结合提供了很好的预测性能。这表明,高阶相关函数对于形成用于预测复杂材料物理特性的通用模型非常有用。此外,我们的结果表明,神经网络优于建立定量结构 - 特制关系的更传统的回归方法。
Quantitative structure-property relationships are crucial for the understanding and prediction of the physical properties of complex materials. For fluid flow in porous materials, characterizing the geometry of the pore microstructure facilitates prediction of permeability, a key property that has been extensively studied in material science, geophysics and chemical engineering. In this work, we study the predictability of different structural descriptors via both linear regressions and neural networks. A large data set of 30,000 virtual, porous microstructures of different types is created for this end. We compute permeabilities of these structures using the lattice Boltzmann method, and characterize the pore space geometry using one-point correlation functions (porosity, specific surface), two-point surface-surface, surface-void, and void-void correlation functions, as well as the geodesic tortuosity as an implicit descriptor. Then, we study the prediction of the permeability using different combinations of these descriptors. We obtain significant improvements of performance when compared to a Kozeny-Carman regression with only lowest-order descriptors (porosity and specific surface). We find that combining all three two-point correlation functions and tortuosity provides the best prediction of permeability, with the void-void correlation function being the most informative individual descriptor. Moreover, the combination of porosity, specific surface, and geodesic tortuosity provides very good predictive performance. This shows that higher-order correlation functions are extremely useful for forming a general model for predicting physical properties of complex materials. Additionally, our results suggest that neural networks are superior to the more conventional regression methods for establishing quantitative structure-property relationships.