论文标题

泄漏强迫的概括

Generalizations of Leaky Forcing

论文作者

Alameda, Joseph S., Kritschgau, Juergen, Young, Michael

论文摘要

最近引入了顶点泄漏强迫,作为零强迫的新变化,以说明顶点泄漏如何破坏图中的零强迫过程。边缘泄漏是一个边缘,在零强迫过程中不允许跨越。 $ \ ell $ - 边缘裂变的图形的强迫数是最小的零强迫集的大小,尽管$ \ ell $ ed $ edge泄漏,但仍可以迫使图形蓝色。本文包含了边缘泄漏对零强迫过程的影响而不是顶点泄漏的分析。此外,还引入了指定的$ \ ell $ -leaky强迫。主要的结果是$ \ ell $ -leaky强迫,$ \ ell $ -Edge-Leaky迫使和指定的$ \ ell $ -leaky-leaky强迫是等效的。此外,所有这些不同类型的泄漏都可以混合,以便使用顶点泄漏,边缘泄漏和指定的泄漏。这个混合的$ \ ell $ -leaky强迫号也与(vertex)$ \ ell $ -leaky强迫号码相同。

Vertex leaky forcing was recently introduced as a new variation of zero forcing in order to show how vertex leaks can disrupt the zero forcing process in a graph. An edge leak is an edge that is not allowed to be forced across during the zero forcing process. The $\ell$-edge-leaky forcing number of a graph is the size of a smallest zero forcing set that can force the graph blue despite $\ell$ edge leaks. This paper contains an analysis of the effect of edge leaks on the zero forcing process instead of vertex leaks. Furthermore, specified $\ell$-leaky forcing is introduced. The main result is that $\ell$-leaky forcing, $\ell$-edge-leaky forcing, and specified $\ell$-leaky forcing are equivalent. Furthermore, all of these different kinds of leaks can be mixed so that vertex leaks, edge leaks, and specified leaks are used. This mixed $\ell$-leaky forcing number is also the same as the (vertex) $\ell$-leaky forcing number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源