论文标题
基于多层和多扰动非局部跨越元素的多功能谐振波沿形状元观
Multifunctional Resonant Wavefront-Shaping Meta-Optics Based on Multilayer and Multi-Perturbation Nonlocal Metasurfaces
论文作者
论文摘要
光子设备很少在传入波前提供精细的空间控制和锋利的光谱控制。例如,在光学元面积中,单个元单元的局部模式在宽带宽度上控制波前形状,而非本地晶格模式在许多单位细胞上延伸,支持高质量的因子共振。在这里,我们在实验中证明了近红外的非局部介电元面积,可提供光的空间和光谱控制光,从而实现金属镜,专门集中在窄带共振上,同时留下不受影响的频率。我们的设备通过在编码的连续体中支撑一个数几何阶段的连续体中支撑一个准结合的状态来实现此功能。我们利用这种能力来实验实现多光谱波沿形状的多功能平台,其中一堆元图(每种元图)在连续体中支持多个独立控制的准准结合状态,在多个波长下独特地塑造了光波前,并在其余部分中保持透明。这样的平台可扩展到可见的增强现实和透明显示器中的应用程序。
Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth, while nonlocal lattice modes extended over many unit cells support high quality-factor resonances. Here, we experimentally demonstrate nonlocal dielectric metasurfaces in the near-infrared that offer both spatial and spectral control of light, realizing metalenses focusing light exclusively over a narrowband resonance while leaving off-resonant frequencies unaffected. Our devices attain this functionality by supporting a quasi-bound state in the continuum encoded with a spatially varying geometric phase. We leverage this capability to experimentally realize a versatile platform for multispectral wavefront shaping where a stack of metasurfaces, each supporting multiple independently controlled quasi-bound states in the continuum, molds the optical wavefront distinctively at multiple wavelengths and yet stay transparent over the rest of the spectrum. Such a platform is scalable to the visible for applications in augmented reality and transparent displays.