论文标题

数值相对论,全息和量子无效的能量条件

Numerical Relativity, Holography and the Quantum Null Energy Condition

论文作者

Stanzer, Philipp

论文摘要

量子无效状况(QNEC)是量子理论中唯一已知的一致局部能量条件。与已知在QFT中违反的经典能量条件相反,QNEC是量子焦点引起的结果,已被证明是几种特殊情况,通常在三个或多个时空维度中QFTS。 QNEC涉及所考虑的理论的本质上量子特性,即纠缠熵(EE)。众所周知,EE在QFT中很难计算,但全息原理提供了简单的几何描述。通常,全息原理将没有重力的量规理论与一个维度的量子重力理论相关联。全息图提供了一种学习强烈耦合的场理论以及量子重力的方法,并在这种情况下研究QNEC无疑会带来新的见解。在本文中,重点放在$ 2 $ - 和$ 4 $维的字段理论上,我们研究了使用数值和分析方法提高复杂性的系统。在真空中,热状态,全球淬火状态和用于重离子碰撞的玩具模型,我们发现QNEC总是满足且有时饱和的,而与经典无效的无效状态相比,它可能是更强或更较弱的状态。有趣的是,在批量物质存在下,QNEC $ _2 $在二维中无法饱和。巨大的标量粒子的反射提供了一个示例,其中有限差距到饱和度。考虑到与爱因斯坦重力耦合的大规模自我互操作标量场导致从小到大黑洞的相变。双场理论提供了一个丰富的示例,可以使用QNEC $ _2 $作为了解强耦合动态系统的工具。特别是知道QNEC $ _2 $在基础状态下,我们可以对热状态的相结构发表陈述。

The quantum null energy condition (QNEC) is the only known consistent local energy condition in quantum theories. Contrary to the classical energy condition which are known to be violated in QFT, QNEC is a consequence of the quantum focussing conjecture and has been proven for several special cases and in general for QFTs in three or more spacetime dimensions. QNEC involves an intrinsically quantum property of the theory under consideration, the entanglement entropy (EE). While EE is notoriously hard to calculate in QFT, the holographic principle provides a simple geometric description. In general the holographic principle relates a gauge theory without gravity to a theory of quantum gravity in one dimension higher. Holography provides a way to learn about strongly coupled field theories as well as quantum gravity and investigating QNEC in this context will undoubtedly lead to new insights. In this thesis the focus is put on $2$- and $4$-dimensional field theories, where we study systems of increasing complexity with numerical and analytical methods. In vacuum, thermal states, globally quenched states and a toy model for heavy ion collisions we find that QNEC is always satisfied and sometimes saturated, while it can be a stronger or weaker condition than the classical null energy condition. Interestingly in two dimensions QNEC$_2$ cannot be saturated in the presence of bulk matter. The backreaction of a massive scalar particle provides an example where the finite gap to saturation is precisely known. Considering a massive self-interacting scalar field coupled to Einstein gravity leads to phase transitions from small to large black holes. The dual field theory provides a rich example to use QNEC$_2$ as a tool to learn about strongly coupled dynamical systems. In particular knowing QNEC$_2$ in the ground state allows us to make statements about the phase structure of the thermal states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源