论文标题
从1985年到2018年,丹麦与丹麦的水平和垂直城市致密化绘制:语义分割解决方案
Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: a semantic segmentation solution
论文作者
论文摘要
Landsat图像是无与伦比的免费可用数据源,允许重建水平和垂直城市形式。本文解决了使用Landsat数据(尤其是其3000万空间分辨率)来监视三维城市致密化的挑战。我们比较了具有简单的完全卷积网络(FCN)和基于纹理的随机森林(RF)模型的适应性深色模型的时间和空间可传递性,以在两个形态学维度中绘制城市密度:水平(紧凑,开放,稀疏)和垂直(垂直)(高层,高层,低层)。我们测试是否可以将对2014年数据培训的模型应用于丹麦的2006年和1995年,并检查我们是否可以使用对丹麦数据训练的模型来准确地绘制其他欧洲城市。我们的结果表明,深层网络的实现以及多尺度上下文信息的包含大大改善了分类以及模型在跨时空概括的能力。当有足够的训练数据可用时,DeepLab提供的水平和垂直分类比FCN提供了更准确的水平和垂直分类。通过使用DeepLab,与丹麦FCN和RF相比,F1得分可以提高4%和10个百分点,以检测垂直城市的增长。对于通过丹麦的培训数据来映射其他欧洲城市,DeepLab还显示了两个维度比RF的6个百分点的优势。整个1985年至2018年的最终地图揭示了丹麦两个最大城市哥本哈根和阿尔胡斯之间城市增长的不同模式,这表明这些城市已经使用了各种规划政策来应对人口增长和住房供应挑战。总而言之,我们提出了一种可转移的深度学习方法,用于从Landsat图像中对城市形式进行自动化的长期映射。
Landsat imagery is an unparalleled freely available data source that allows reconstructing horizontal and vertical urban form. This paper addresses the challenge of using Landsat data, particularly its 30m spatial resolution, for monitoring three-dimensional urban densification. We compare temporal and spatial transferability of an adapted DeepLab model with a simple fully convolutional network (FCN) and a texture-based random forest (RF) model to map urban density in the two morphological dimensions: horizontal (compact, open, sparse) and vertical (high rise, low rise). We test whether a model trained on the 2014 data can be applied to 2006 and 1995 for Denmark, and examine whether we could use the model trained on the Danish data to accurately map other European cities. Our results show that an implementation of deep networks and the inclusion of multi-scale contextual information greatly improve the classification and the model's ability to generalize across space and time. DeepLab provides more accurate horizontal and vertical classifications than FCN when sufficient training data is available. By using DeepLab, the F1 score can be increased by 4 and 10 percentage points for detecting vertical urban growth compared to FCN and RF for Denmark. For mapping the other European cities with training data from Denmark, DeepLab also shows an advantage of 6 percentage points over RF for both the dimensions. The resulting maps across the years 1985 to 2018 reveal different patterns of urban growth between Copenhagen and Aarhus, the two largest cities in Denmark, illustrating that those cities have used various planning policies in addressing population growth and housing supply challenges. In summary, we propose a transferable deep learning approach for automated, long-term mapping of urban form from Landsat images.