论文标题

引力模型解释了人类视觉关注的转变

Gravitational Models Explain Shifts on Human Visual Attention

论文作者

Zanca, Dario, Gori, Marco, Melacci, Stefano, Rufa, Alessandra

论文摘要

视觉关注是指人类大脑选择相关的感官信息以进行优先处理的能力,从而提高了视觉和认知任务的性能。它分为两个阶段。其中一个并联获取和处理视觉特征图。另一个合并了来自这些地图的信息以选择要参加的单个位置以进行进一步,更复杂的计算和推理。它的计算描述具有挑战性,尤其是在考虑过程的时间动态时。在过去的三十年中,已经提出了许多估计显着性的方法。他们在估计像素级别的显着性方面获得了几乎完美的性能,但是它们产生视觉关注的方式完全取决于获奖者 - 全部(WTA)电路。 WTA由生物硬件实施,以便选择具有最大显着性的位置,以直接关注。在本文中,我们提出了一个引力模型(GRAV)来描述注意力转移。每个特征都充当吸引子,{移位是吸引子的关节效应的结果。在当前的框架中,尽管仍然是合理的,但不再需要一个单一的集中显着性图的假设。两个大图像数据集上的定量结果表明,该模型比赢家击败全部预测更准确。

Visual attention refers to the human brain's ability to select relevant sensory information for preferential processing, improving performance in visual and cognitive tasks. It proceeds in two phases. One in which visual feature maps are acquired and processed in parallel. Another where the information from these maps is merged in order to select a single location to be attended for further and more complex computations and reasoning. Its computational description is challenging, especially if the temporal dynamics of the process are taken into account. Numerous methods to estimate saliency have been proposed in the last three decades. They achieve almost perfect performance in estimating saliency at the pixel level, but the way they generate shifts in visual attention fully depends on winner-take-all (WTA) circuitry. WTA is implemented} by the biological hardware in order to select a location with maximum saliency, towards which to direct overt attention. In this paper we propose a gravitational model (GRAV) to describe the attentional shifts. Every single feature acts as an attractor and {the shifts are the result of the joint effects of the attractors. In the current framework, the assumption of a single, centralized saliency map is no longer necessary, though still plausible. Quantitative results on two large image datasets show that this model predicts shifts more accurately than winner-take-all.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源